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Preface 

This synthesis and collection of papers constitute a thesis presented in partial 

fulfillment of the requirement for the degree philosophiae doctor (PhD) in 

Meteorology at the Geophysical Institute, University of Bergen, Norway. 

 

The skills of real-time seasonal rainfall predictions issued by the National 

Meteorological Agency of Ethiopia have been verified.  Spatially coherent 

homogeneous rainfall regions have also been developed. Multivariate 

statistical techniques have been employed to develop multiple regression and 

canonical correlation analysis models for the main rainy season in Ethiopia. 

Influences of regional and teleconnection of oceanic and atmospheric 

components have been examined on seasonal and annual time scales. An 

overview of drought episodes in all parts of Ethiopia during the recent 

decades has been examined using standard statistical techniques. 

 

Both observational and reanalyzed data for the ocean and atmosphere have 

been used in this study. More emphasis is given for local observations in 

order to diagnose the teleconnection linkages that exist between ENSO 

phenomena and seasonal rainfall conditions, and documented their feedback 

on various temporal and spatial scales. 
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Abstract 

Ethiopia composes diversified topographic structures; undulated plateaus and 

mountains, raged valleys and plains. The highlands and ever-green portions 

of the county are fringed by the Sahara and Arabian deserts as well as East 

African arid climates. In contrast, climate of the major parts of the country is 

influenced majorly by tropical features while partly interacted with inter-

hemispheric weather systems. Ethiopia‘s climate is prone to both extended 

rainfall deficits and excesses. In extreme cases, these may lead to droughts, 

economic hardship and humanitarian disasters. Droughts are the most 

natural catastrophes that impose impended social and economic crisis in the 

history of Ethiopia that have been manifested in tampering agriculture and 

food security, livestock development, hydro-electricity production, transport, 

water resource management, health and public safety. Numerous evidences 

have been documented that when any one of these sectors become affected, 

the effect can spread quickly and a whole country may suffer. Skillful 

prediction of seasonal rainfall would therefore bring sound change in disaster 

risk reduction and prevention and economic benefit to the country that 

depends on rain-fed agriculture. It would enable timely actions to be taken by 

the government and the public in order to avert or minimize potential hunger, 

poverty and famine resulting from drought.  

 

Since the issuance of the seasonal climate prediction has begun in Ethiopia, 

the National Meteorological Agency has gone through continuous 

improvement in order to enhance the skill of predicting seasonal rainfall 

anomalies for various occasions. However, there are a lot of constraints in 

quantifying the seasonal rainfall trends and homogenizing their spatial and 

temporal patterns. Although seasonal climatic features are complex in nature, 

this thesis has focused mainly on the characterization of the predictability of 

rainy seasons in Ethiopia. Four manuscripts are included. The first 

manuscript provides an overview of NMA‘s operational seasonal rainfall 
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prediction skills in various rainfall regimes of Ethiopia. The second manuscript 

provides spatially coherent homogeneous rainfall regimes as the main 

platform for developing region-specific climate prediction model. The third one 

deals with the construction of multivariate statistical seasonal rainfall based 

on ENSO indices for the main rainy season in major portions of Ethiopia. The 

fourth manuscript provides an overview of drought episodes in all parts of 

Ethiopia during the recent decades. 

 

In the forecast verification manuscript (Paper I), we evaluated the skill of the 

National Meteorological Agency of Ethiopia‘s operational seasonal rainfall 

forecast for the February–May (FMAM) and June–September (JJAS) rainy 

seasons for the period 1999–2011. Our analysis showed that the forecasting 

system was biased toward the near-normal category. The ranked probability 

skill scores (RPSS) which computes the relative skill of the probabilistic 

forecast over that of the climatology is positive for all 16 forecasts series, 

indicating that the forecast has better skill as compared to chance. The 

results further suggested that the forecasting system has problems in 

capturing below normal rainfall events. This under-forecasting of dry events is 

of great practical importance. In contrast, the forecast showed slightly higher 

skills for above normal than below normal rainfall categories during both 

seasons and hence indicated that there is a greater reluctance to assign 

higher terciles for below normal than for above normal rainfall as a forecast 

for dry conditions would be considered more serious and may lead to 

initiation of drought preventive actions. 

 

In the homogeneous rainfall classification (Paper II), we analysed a spatial 

and temporal rainfall patterns of Ethiopia based on 162 quality-controlled 

point stations and 717 grid-points generated from satellite rainfall estimate-

merged with meteorological stations. Analysis of various clusters on the 

monthly rainfall data indicated the presence of distinct spatial rainfall patterns 
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over Ethiopia. Principal Component Analysis (PCA) was broadly categorized 

Ethiopia in three major rainfall regions that vividly identified the dominance of 

large rainfall dissimilarities and strong seasonality, which separate June-

September (Kiremt) rain-benefiting from February-May (Belg) and October-

January (Bega) rainfall regimes. The application of Cluster Analysis (CA), on 

the other hand identified twelve distinct rainfall regions for the country. The 

characteristic of each homogeneous rainfall region is the reflection of the 

typical seasonal cycle that prevails in Ethiopia. The identification of specific 

rainfall regions add values in the local seasonal climate forecasting, 

monitoring of climate variability and change on regional and national scales. 

In this study, the mountainous chains that bisect northwestern from the 

northeastern regions were well replicated in our spatial delineations. The 

formation of the dry corridors of the northern Rift Valley and southeastern 

lowlands are among the most interesting clearly depicted regional features, 

where understanding of the meteorological mechanisms may provide a 

benefit to realize the impact of rainfall variation on social and economic 

activities of the region. 

 

In paper III, we examined the predictive potential for June–September rainy 

seasonal in Ethiopia using multivariate statistical approaches. The skill of a 

dynamical approach to predicting the El Niño–Southern Oscillation (ENSO), 

which impacts Ethiopian rainfall, was assessed. The study attempts to identify 

global and more regional processes affecting the large-scale summer climate 

patterns that govern rainfall anomalies. Multivariate statistical techniques are 

applied to diagnose and predict seasonal rainfall patterns using historical 

monthly mean global sea surface temperatures and other physically relevant 

predictor data. We showed that Ethiopia‘s June–September rainy season is 

governed primarily by ENSO, and secondarily reinforced by more local 

climate indicators near Africa and the Atlantic and Indian Oceans, which 

revealed in this case that 67% (85%) of dry (wet) events are associated to El 
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Niño (La Niña) episodes. It is therefore scientifically judicious that rainfall 

anomaly patterns can be predicted with some skill within a short lead time of 

the summer season, based on emerging ENSO developments. We further 

identified that the ENSO predictability barrier in the Northern Hemisphere 

spring poses a major challenge to providing seasonal rainfall forecasts two or 

more months in advance.  

 

In the drought analysis (Paper IV), meteorological observations were used to 

construct monthly time series for 14 homogeneous rainfall zones, covering all 

of Ethiopia during 1971–2010/2011. The Standardized Precipitation Index 

(SPI) was then calculated for each zone on time scales of 3, 4, 6, 9, 12, 24 

and 48 months. The results indicate that 2009 was one of the driest years in 

Ethiopia since 1971, and that there has been a cluster of dry spring (locally 

known as Belg) seasons in most of the country during the last 10–15 years. 

Linear regression analysis confirmed a decline in precipitation in southern 

Ethiopia, both in the spring and in the summer (locally known as Kiremt). The 

trend analysis did not give us reason to draw any conclusions for central and 

northern Ethiopia, but the clustering of dry spring seasons during the last 10–

15 years was apparent also in this part of the country. 
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1 Introduction 

1.1 Background 
 

 

The rainfall pattern of the tropical regions is strongly characterized by 

seasonality, with dry and short rainy seasons on the one side, and wet and 

long rainy seasons on the other side of the year. One of the physical causes 

that produce a seasonal cycle is the differential variation of solar radiation 

and meridional and zonal migration of weather producing systems. The 

position and intensity of the meteorological systems impacts the amount and 

distribution of climatic elements such as; rainfall, temperature, humidity and 

wind. 

 

From a practical point of view, knowing the seasonality of climate and the 

underlying characteristics of a given region help policy-makers to foresee how 

weather and climate may influence the ever growing social and economic 

strive. In this regard, efforts have been made worldwide to investigate the 

seasonal variations of climates that commonly prevail at local, regional and 

global scales. Among these global initiatives, researches and scientific 

explorations to improve the weather forecasting and climate predictions 

capabilities have remained on the top of a global agenda. Despite the fact 

that a lot of improvements have been made in scaling-up climate prediction 

methods, predictability and reliability of seasonal forecasts are not yet 

reached a satisfactorily level.  

 

In Ethiopia, there are three distinct seasons; broadly prevailing on annual 

timescale where each season has its own particular feature in terms of spatial 

climatic distributions and temporal variations. Much of the Ethiopian economic 
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performances depend on rain. For instance, rain-fed agricultures of the 

country perform better under timely onset and cessation of the rainy season 

as well as low intra-seasonal variability of rainfall. Similarly, agro-pastoralists 

and pastoralists also require a stable rainy season with minimum tolerance to 

extreme climatic events. Water resources for day-to-day activities and 

hydropower energy generation depend on the seasonal rainfall performance 

and also waterborne diseases, malaria and meningitis are strongly influenced  

by spatial and temporal variability in parameters such as; rainfall, 

temperature, relative humidity, sunshine duration, pressure gradient and 

wind.  

 

The construction of weather and climate prediction schemes and the 

evaluation and checking of their skills are therefore important to several 

aspects of Ethiopian society. However, lack of comprehensive understanding 

on the terrain complexities and their impacts on the seasonal climatic 

distributions diffuse the selection of climate prediction models to make 

reliable prediction for the country. The overall aim of this thesis is therefore to 

undertake scientific studies on the seasonality of rainfall over Ethiopia, 

establish spatial coherent homogeneous rainfall regions, perform an in-depth 

evaluation on the performance of the National Meteorological Agency (NMA) 

seasonal rainfall forecasting system and examine the progress that have 

been made toward the development of improved seasonal rainfall prediction 

system.  

  

1.2 Motivation 
 

 

The strong seasonal rainfall variation, which has affected much of Ethiopia in 

recent years, added to potential climate effects associated with increasing 
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climate-related disasters, have provoked speculations about the predictability 

skill of Ethiopia climate in the future. The impact of false alarm from the failure 

of seasonal rain differs among the rainfall regimes and directly corresponds 

with the degrees of their reliability. In particular, the failure of the kiremt rains 

creates heightened stresses in the major crop producing regions and big 

water dams regions of the country. It causes severe shortages in terms of 

water and food crops, and subsequently leading to increased hardship for 

millions of people and livestock mortality in the dry regions. On this 

background, this thesis is motivated, particularly to investigate the 

predictability nature of seasonal rainfall, temporal and spatial tendencies of 

droughts across various climatic regions of Ethiopia.    

 

An investigation on the natural disaster over Ethiopia reveals that the country 

has experienced large climate-related hazards historically. For example, 

NMSA (1996) documented the chronology of Ethiopian droughts and famines 

since 253-242 BC to 1992. In recent years, a case study made in parts of 

Ethiopia by Stefan and Krishnan (2000) suggested that 50 percent below 

average rainfall would give a poverty rate of about 60 percent. Webb et al. 

(1992) also suggested that the worst recent droughts were caused due to at 

least two consecutive years of poor rainfall. Although climate variability and 

the associated socio-economic impacts have continued, the level to which it 

imposes nationwide influence has declined in recent years. For example, the 

beginning of issuing seasonal forecast in Ethiopia has contributed for the 

inclination of mitigating likelihood of climate-related impacts on various social 

and economic sectors. In fact, it is hard to say how much economy and social 

losses have been saved by using seasonal forecast. Furthermore, evidence 

of similar causes in the Ethiopian context is still inconclusive. Nevertheless, 

we believe that climate-based early warning would play a significant role in 

reducing societal incidences partly due to climatic extremes.  
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Seasonal climate forecasting techniques are broadly categorized into two; 

empirical/statistical, and numerical/dynamical modeling techniques, of which 

the former have historically been more widely developed (Murphy et al., 

2001). Murphy et al. (2001) have further documented that seasonal climate 

forecasting is one of the promising development for early warning on climate 

hazards. Tropical and subtropical countries have made the forecast in the 

monitoring and disaster preparedness for droughts and floods associated with 

El Niño Southern Oscillation (ENSO). Mutai et al. (1998) have found for East 

Africa a promising seasonal forecast skill for the OND (October-December) 

short rains using multiple regression techniques and predictors based on 

eigenvectors of global seas surface temperature (SST). ENSO-based rainfall 

forecast in Ethiopia also showed potential skills in predicting seasonal 

anomalies (Bekele 1997; Gissila et al. 2005; and Diro et al. 2010). Prediction 

of the onset and cessation dates of the rainy season is also a key issue in 

countries which rely on rain-fed agriculture for better explanation of the 

growing season of a given area (Camberlin and Diop 2003). In the case of 

Ethiopia, the use of seasonal rainfall forecast could play a noticeable role in 

order to scaling-up crop productivity during the main rainy season (Yemenu 

and Chemeda 2010).  The prospect of using Regional Climate Models (RCM) 

to provide advance information about higher-order weather statistics, such as 

wet and dry spell distributions, that are relevant to agriculture (Sun et al. 

2005), is a promising area for further research in the African context. 

 

Hansen (2002) suggested that opportunities for the use of seasonal climate 

forecasts arise in which there is a combination of climate predictability, 

response, and decision capacity. Similarly, Millner and Washington (2011) 

emphasized that the economical use of seasonal forecasts became viable 

when the products meet the users‘ need.  Thus, the value of seasonal 
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forecasts may increase by tailoring the forecast categories to the user‘s 

needs. Yemenu and Chemeda (2010) further documented that despite 

encouraging efforts in developing skillful potential forecasts, they are not 

widely used in part because of poor performance and lack of relevance to 

specific users‘ decision problems, and in part because of various economic 

and behavioral causes. 

 

Another societal benefit of seasonal climate prediction is its application in 

monitoring and forecasting disease outbreak during the rainy or dry seasons. 

Thomson et al. (2005) acknowledged how seasonal climate predictions are 

recently in use to forecasting disease risks such as; malaria epidemic. 

Because it was known that malaria epidemics was often preceded by one 

month of anomalous high minimum temperatures in the preceding three 

months prior to the outbreak (Abeku et al 2003 and 2004). As the need for 

climate information from the health sector increases, the National 

Meteorological Agency (NMA) adopted the Grover-Kopec et al. (2006) 

approach to prepare and disseminate a monthly health bulletin for malaria 

monitoring in Ethiopia. Equally, the seasonal climate forecast has contributed 

enormously in water resource management, particularly, in hydropower 

generation (Block 2011). In this regard, Block (2011) further showed that 

tailoring the rain forecast to highlight critical dry forecasts would minimize 

poor-decision on hydropower management. 

 

Generally, the uses of seasonal climate prediction for various social and 

economic sectors persuade my research attention towards the evaluation of 

past forecasting systems, the exploration of new prediction systems and to 

contribute towards the creation of improved climate predictability in Ethiopia. 

In this thesis, my study largely centered on the techniques that enable to,  
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 Identify climatic systems that influence seasonal  rainfall over Ethiopia, 

 Document the benefit of research and study on the advancement of 

seasonal climate predictions, 

 Identify the gaps in generating user-tailored seasonal climate 

information, which could improve decision-making and societal 

benefits, especially in the long-term, 

 Identify the local and regional factors for the preparation of local-

specific seasonal climate. Because until recently most of the 

operational seasonal forecasts are prepared for vast regions, which 

reduce their spatial resolution and possibility  to be used at local level,  

 Examine and identify the severity of drought tendencies, and  

 Apply suitable verification techniques that enable to verify seasonal 

climate forecasts on routinely basis. 

  

The scientific motivation for this thesis is therefore to evaluate the impact of 

regional and global circulation features and their predictability potentials as 

well as their link to the seasonal rainfall cycle in Ethiopia. Much of the earlier 

seasonal forecasting systems partly concentrated on subjectivity and relied 

on ENSO information. Emphasis is therefore given here to examine the time 

lag relationship between Ethiopian June-September (main rainy season) 

rainfalls and build multivariate statistical model that enable to predict the 

seasonal rainfall pattern. Developing homogeneous rainfall regions and show 

how they can provide in-depth knowledge on the local climates for exploring 

specific climate features is also another task of this thesis. Besides, this 

thesis is aimed to evaluate the predictability skill of NMA‘s seasonal 

forecasting system and drought severities and tendencies. 
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1.3 Objectives 
 

This study concentrated on the scope of seasonal climate prediction of rainfall 

in Ethiopia. Seasonal climate prediction started in 1987 after the worst 

drought of 1984 occurred in Ethiopia. During earlier days, the seasonal 

forecast was aimed to provide rainfall outlook for the main rainy season so 

that the government can undertake appropriate actions on disaster prevention 

and preparedness for the expected climate-related hazards in advance. After 

the use of climate prediction for early monitoring on droughts was realized, 

NMA established the long-range forecast unit. This unit was intended to 

prepare and disseminate seasonal climate forecasts on the national scale. 

During the past two decades, the request for seasonal forecasts have 

significantly expanded and has ultimately become core inputs for early 

planning and decision making mainly for annual agricultural practice, water 

resource management, vector-borne diseases monitoring, disaster 

preparedness and prevention. Despite the critical need for one season to 

year-long climate forecasts from policy makers, planners and general public, 

the improvement on NMA‘s seasonal forecasting methods has shown slow 

progress. In this regard, the seasonal forecasting system should be verified 

and evaluated using standard forecast verification methods. If NMA‘s 

seasonal forecasts do not meet the need of the user community it will loss 

trust from the public.  

 

The main objectives of this thesis are:  

 Evaluate and verify NMA‘s seasonal forecasting system for the two 

rainy seasons (February-May and June-September) and identify 

regions and temporal rainfall events that are forecasted better (weaker) 

than the climatology (Paper I).  
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 Develop and establish spatially-coherent homogeneous rainfall regimes 

in Ethiopia (Paper II). 

 Construct skillful seasonal models for June-September rainy season in 

Ethiopia using multivariate statistical method, with sufficient lead time 

(Paper III).  

 Document the meteorological component of Ethiopian drought 

episodes and evaluate their spatial and temporal tendencies(Paper IV)  
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2 Background 

 

2.1 The country Ethiopia 

 

Ethiopia is located within 3.30°N–15°N and 33°E–48°E, in the Horn of Africa 

(Fig. 1). It covers an area of about 1.14 million square kilometers (944,000 

square miles), with the total population of more than 85 million (MoFA 2013). 

The country‘s topography consists of high and rugged plateaus and the 

peripheral lowlands. From a topographic view point, the country confines the 

Great African Rift Valley that bisects Ethiopia into the eastern and western 

escarpments. It gradually slopes up from the lowland edges of Rift Valley to 

the eastern and western escarpments into the southern, central, western and 

northern mountains. Major parts of the country are made up of a wide plateau 

and mountains of various heights (Fig. 2). Elevations in the country range 

from the 160 meters below sea level (northern exit of the Rift Valley) to over 

4600 meters above sea level (of northern mountainous regions). The highest 

mountains are concentrated on the northern and southern plateaus of the 

country (MoWR 2013). The climatic condition of the country results in high 

rainfall during the rainy season, which in turn causes perennial and seasonal 

rivers and stream flows. However, as rainfall is seasonal, the volume of 

discharges of rivers, both local and trans-boundaries are subject to seasonal 

variations (MoWR 2013).   

 

Ethiopia leads an agrarian economy, in which pure farming, mixed farming 

and livestock herding (pastoralists) are common practice. Consistent 

increasing in population as well as over-exploitation of natural resources such 

as; natural forest, swampy lands for agriculture and an alarming expansion of 

http://www.mfa.gov.et/
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urbanization impose strong influence on agricultural led economic pathway 

development of the country. The agricultural sector supports 85% of the 

population and hence is central to the livelihoods of the rural poor in Ethiopia 

(Conway et al. 2007; Deressa 2006). The agricultural practices currently held 

in the country mainly depend on the seasonal rainfall as only a small fraction 

of the agriculture is irrigated and a significant declining in annual agricultural 

production have been observed during drought years (Lemi 2005).  

  

Ethiopia is repeatedly affected by floods and droughts. During the twentieth 

century, prolonged droughts often followed by seasonal floods partly 

stagnated the country's economic growth while exacerbated societal dispute, 

migration and famines. NMA (2007) documented some of the  climate related 

hazards in Ethiopia include droughts, floods, heavy rains, strong winds, frost 

and heat waves. There have been traditional and modern coping 

mechanisms including changes in cropping and planting practices as well as 

declining of consumption levels through the collection of wild foods, use of 

inter-household transfers and loans, increased petty commodity production, 

temporary and permanent migration in search of employment, grain storage, 

sale of assets such as livestock and agricultural tools, mortgaging of land, 

credit from merchants and moneylenders, use of early warning, food appeal 

and aid (NMA 2007).  
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Fig. 1: Location of Ethiopia. 

 

Fig. 2: Topographic map of Ethiopia (Wikipedia 2013) 
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2.2 Climate of Ethiopia 

 

2.2.1 General Features 

 

Ethiopia experiences a typical warm and moist tropical climate, with hot and 

semiarid dominate the north‐eastern lowland regions. Mean annual 

temperatures range between 15 and 20°C in the highlands. In contrast, the 

low-lying regions experience 25‐30°C. The seasonal rainfall progression is 

mostly influenced by the north/south ward migration of the Inter‐Tropical 

Convergence Zone (ITCZ). Most parts of the country receive substantial 

rainfall amounts between June and September (Fig. 3a-d). Indeed, some 

parts of central, northeast and eastern Ethiopia receive relatively less rainfall 

between March to May (Fig. 3b and c). For the southern and southeastern 

regions of Ethiopia, March-May and October-December are the major and 

small rainy seasons, respectively (Fig. 3f).  

 

Ethiopia, with its vast and complex topography (Fig. 2) experiences a wide 

diversification of climates, which vary from typically tropical in the lowlands 

and Rift Valley regions to cool temperate-type in the northern and southern 

mountainous regions. Plateaus and ragged mountains play great roles in 

dictating the climatic features of the country. For instance, the southeastern 

lowland plains are the major passage of southwesterly cross equatorial 

moisture during the northern hemisphere summer season, which is carried by 

southwesterly winds from the Indian Ocean to southwest regions and partly 

also flow into other portions of Ethiopia. The closeness of this region to the 

ocean and lying under the highway passage of moisture flow, the regions 

could have received plentiful rains during the northern hemisphere summer 

season if topographic feature enabling the condensation of water was 

present. Similarly, the northeastern lowlands lay underneath of the passage 
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of cloud storms that emerge both from Yemen high grounds and Arabian Sea 

into the northeastern highlands, while traversing to the western escarpments 

of the Rift Valley (Fig. 3b). As a result of few topographic barriers these 

regions are the dry corridor of the country. In contrast, the southwestern 

regions, where the country‘s tropical rainfall forests remain partially intact 

receive maximum amount of rainfall throughout the year.  

 

The atmospheric systems that induce strong influence on the rainfall and 

temperature patterns of Ethiopia have widely been documented by many 

authors. For instance, Kassahun (1987) elaborated the major weather 

systems that trigger various climate patterns over Ethiopia on monthly 

timescale. Tadesse (1994), Segele and Lamb (2005), and Gissila et al. 

(2004) also studied on rainfall variability of the June-September rainy season 

from regional and global perspectives. Diro et al. (2009) described some of 

the weather systems that produce spring rains (February-May, small rainy 

season) over Ethiopia. Even though NMSA (1996) documented the major 

weather systems controlling the country‘s climate, further scientific 

investigation is needed on how local and regional climate features responded 

to the major atmospheric phenomena. 
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As the climate of mountainous region such as Ethiopia is rather complex, it 

has been the topic of many studies and several classification systems. The 

Ethiopian traditional system uses altitude and mean daily temperature to 

divide the country into five climate zones (Gemechu 1977). Both the Köppen 

and the Thornthwaite classification systems have also been applied (Gonfa 

1996). The most useful for agricultural purposes is the agroclimatic zones 

which used the water balance concept, the length of the growing season 

(including onset dates) at certain probability levels (NMSA 1996). In this 

regard, three distinct zones can be identified namely; the area without a 

significant growing period (N), areas with a single growing period (S) and 

area with a double growing period (D) (Fig. 4). This information could be able 

to form the basis on which the seasonal forecast is built with particular 

emphasis on the specific user-tailored agricultural sector in each region. 

 

 

Fig. 4: Agroclimatic zones of Ethiopia 
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2.2.2  Rainfall seasons and mean circulation systems 
 
i) General 

 

Ethiopia has three climatological rainy seasons namely; February–May 

(FMAM, Belg), June–September (JJAS, Kiremt) and October–January 

(ONDJ, Bega) seasons (Seleshi and Demarée 1995; Shanko and Camberlin 

1998; Tsegay 1998 and 2001; Gissila et al. 2004; Segele and Lamb 2005; 

Diro et al. 2010). NMA uses these seasonal classifications for routine 

seasonal climate forecasting and monitoring of climatic features. However, 

over some parts of the country uninterrupted rainy season continue for 

successive two to three seasons. The wet season, which spans from March 

to November over southwestern Ethiopia, broadly exemplifies these 

circumstances. Rift Valley and the adjoining escarpments generally, 

experience two rainy seasons; small (March-May) and main (June-

September) rainy seasons, which are interrupted by dry months. The northern 

and southern portions on the other hand, receive intensive rains when Inter-

tropical Convergence Zone (ITCZ) takes its seasonal position over north and 

south Ethiopia, respectively. To examine some of the meteorological systems 

that govern the seasonal climate patterns of Ethiopia, NCEP/NCAR 

reanalysis (Kalnay et al. 1996) data were composited for FMAM (February-

May), JJAS (June-September) and ONDJ (October-January) seasons. 

 

As shown in Fig. 5a, maximum mean annual rainfall amounts of 1750 to 

2500mm are observed over the southwest-northwest sectors of Ethiopia. 

This is because ITCZ and its meridional trough cause rains over these 

regions during kiremt (JJAS) season. The reversal of southerly monsoon 

winds  across the western sector of Indian Ocean also played a role in 

modulating the seasonal cycle of Ethiopian rainfall climatology (Riddle and 

Cook 2008; Segele et al. 2009). An intrusion of southwesterly wind flows 
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associated with the southwest monsoon (Fig. 5b) and the subsequent 

ITCZ shifting northward as well results in summer rains across the 

northern half of Ethiopia. In contrast, when ITCZ shifts northwards, 

southern and southeastern regions remain dry throughout the kiremt 

season, with seasonal rainfall totals of less than 100 mm (Fig. 5b).  

 

One of the underlying factors for the dryness of southern Ethiopia is the 

strong southerly flow that diverges into two components when it reaches 

the periphery of the region; most portions form the southwesterly Low 

Level Jets (LLJ), and become the major components of the southwest 

monsoon system (Fig. 5b right panel). Southerly flows (Fig. 5b) also reach 

the northern Ethiopia and form a converging inflow over the high grounds 

and hence produce abundant rains over the northern half of the country. 

In contrast, when southerly moisture influxes weaken, the northerly flow 

becomes dominant and pushes the rainfall-belt to progress towards west 

and southward (Fig. 5c and 5d). This is clearly seen from the vertically 

integrated moisture fluxes, which was computed from ERA Interim 

reanalyzed data. ERA-Interim is the European Centre for Medium Range 

Weather Forecasts (ECMWF) latest global atmospheric reanalysis 

(Simmons et al, 2006). It can be seen that a large part of the moisture 

transport comes from the north, and this flow meets the southerly flow 

make the convergence zone (see Fig. 5b-5d). Viste and Sorteberg (2012) 

also found that the amount of moisture brought into the Ethiopian 

highlands from the north is 46%, which is higher than that comes from the 

south.  
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Fig. 5: Spatial interpolation of station-based total rainfall climatology (mm) 

from 1971-2000. (a) annual, (b) Kiremt (JJAS), (c) Bega (ONDJ) and (d) 

Belg (FMAM). Seasonal climatological values of vertically integrated ERA 

interim moisture transports in kg/ms (1989-2009) are depicted on the right 

panel for each season. The light colors represent the lowest values of both 
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elements. The months are represented as JJAS for June-September; 

ONDJ for October-January and FMAM for February-May). 

 

ii) Roles of St. Helena and Mascarene high pressure systems 

 

Semi permanents high pressures and seasonal heat low pressure systems 

play substantial roles in modulating the climate of particular place on the 

Earth‘s surface. In order to demonstrate the degree of their influence, position 

and intensity of surface level pressure belts are then identified for each 

season. Fig. 6a, 7a and 8a show the location of Azores High over northwest 

coast of Africa, St. Helena and Mascarene high pressure centers over 

southern Atlantic and Indian Oceans during FMAM, JJAS and ONDJ 

seasons, respectively. Some of the pressure belts always remain within their 

respective position despite the fact that the role of each pressure system 

varies from season to season. The intensification of the southern hemisphere 

high-pressures and the orientation of the main mountain ridges boosts 

moisture fluxes and hence widespread rainfall over Ethiopia (Kassahun 

1987). Camberlin (2009) suggested that from the end of June, because of the 

deepening in the Indian monsoon low further east, the south-westerly flow 

associated with the Indian southwest monsoon spills over the Ethiopian 

highlands to reach the southern Red Sea, where it channeled until it joins the 

main Indian monsoon flow in the Arabian Sea. 

 

iii) Role of Inter-Tropical Convergence Zone (ITCZ) 

 

The inter-hemispheric migration of ITCZ follows the Sun‘s position, and hence 

its location and intensity changes over the course of the year. The cooling of 

the North Atlantic Ocean (partly covering the Azores high pressure region), 
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combined with the warming of the Southern Hemisphere oceans (including 

the Indian Ocean; St. Helena and Mascarene high pressure regions) is likely 

to have resulted into a reduced northward excursion of the ITCZ and/or more 

rainfall over the tropical oceans than over the African continent (Camberlin 

2009). It implies that the weakening of Southern Hemisphere high pressure 

areas (St. Helena and Mascarene) negatively affected the ITCZ, which in turn 

disturbed seasonal rainfall performance over Ethiopia. Besides, Camberlin 

(2009) has shown that the South Atlantic warming is not only a component of 

that of the southern hemisphere, but it also occasionally has a separate 

incidence on monsoon depth, like in 1984 where the devastating drought 

which affected Ethiopia and the Sahel regions can be exceptionally related to 

high Sea Surface Temperature (SST) in the Gulf of Guinea of the Equatorial 

Atlantic Ocean.  

 

Due to its temporal fluctuation and variation, it is difficult to locate ITCZ at 

seasonal mean chart. It, however, generally retreats towards the equator 

during FMAM and ONDJ, but it is organized and located around 10 to 20°N 

during JJAS season. The Sahel region and Ethiopia JJAS rainfall is relatable 

with the position and intensity of this feature. As a result, southern and 

southeastern Ethiopia receives rains in September-November (small) and 

March to May (main rain season for these regions). Camberlin and Philippon 

(2002) pointed that the southward extension of the subtropical westerly jet 

has played important role on the variability of Ethiopian spring (Feb-May) 

rainfall. 
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iv) Roles of Low-Level Jet and easterly perturbation 

 

Findlater (1977) explored the formation of low-level jet (LLJ) during the 

northern hemisphere summer over western Indian Ocean, bordering to the 

East African coast (Fig. 7b). He further documented that over eastern Africa 

coast the low-level jet streams centered at about 1-1.5 km and lie in the 

middle of the daytime convective layer. Low-level wind flows with its core 

centered in 850hPa over the Indian Ocean partly intrude into the Ethiopian 

highlands while the large portion of this feature forms strong southwesterly 

flow towards south Asia during the northern hemisphere summer season (Fig. 

7b). For Ethiopia's JJAS rainy season, low level flows play vital role in 

transporting moisture into the country. In the FMAM and ONDJ seasons, low-

level flows reverses into northerly and northeasterly flow over Ethiopia, which 

mostly transport dry and cold air into the large parts of northern, eastern and 

central Ethiopia (Fig. 6c and 8c). Sometimes within these low-levels, wet 

weather disturbances formed due to moist easterly flow along the horn of 

Africa.      

v) Roles of African Easterly Jet and mid-latitude troughs 

 

Using NCEP/NCAR reanalysis, the 600hPa mid tropospheric levels, 600hPa 

and 500hPa are plotted to show the wind climatology for the three seasons of 

Ethiopia. During the June-September rainy season, the African Easterly Jet is 

depicted at 600hPa although its direct impact on Ethiopia‘s summer rain has 

not yet known (Fig. 7c). Equator-ward penetrations of mid-latitude low 

pressure systems are sometime identified at 500hPa during FMAM and 

ONDJ as it emerges from the plot of vector wind reanalysis. Fig. 6b and 8b 

show the climatological pattern of vector wind. Over the tropical region this 

field is smooth with few features. Therefore, it is difficult to identify the 

position of prominent features affecting Ethiopian climate.   
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vi) Roles of Subtropical Western Jet (STWJ) and Tropical 

Easterly Jet (TEJ) 

 

Ethiopian rainfall is also affected by upper-level systems such as; the Tropical 

Easterly Jet (TEJ) and African Easterly Jet (AEJ) during the main rainy 

season and the Subtropical Westerly Jet (STWJ) during small rainy and dry 

seasons (e.g., Diro et al. 2009). Many authors (e.g., Camberlin and Philippon 

2002; Nicholson and Grist 2003; Segele and Lamb 2005) documented the 

location and intensity of these jets, which modulate convection and thus 

rainfall over northern half of Ethiopia. Fig. 6d, 7d and 8d show the mean 

subtropical westerly jets and tropical easterly jet. TEJ originates from 

Southeast Asia as part of the Indian summer monsoon, with the maximum 

winds found in July-August at 150hPa near 10-15°N over Sudan, with 

velocities decreasing from 25 to 10 m/s from east to west Sudan (Hulme and 

Tosdevin 1989; Segele and Lamb 2005). It plays an important role in 

facilitating deep cloud formation and steering monsoon cloud clusters, which 

are formed over the Arabia region into the Ethiopian high grounds. On the 

regional scale, Pedgley (1969) pointed out that most weather storms 

developed over Ethiopia drift westward because of TEJ of the upper 

troposphere although they often decay before reaching the Nile Plains. In 

contrast, subtropical westerly jet that is formed around the 200hPa pressure 

level oscillates north and southwards. In particular, during the short rainy 

seasons (i.e. FMAM and ONDJ for Ethiopia), Camberlin and Philippon (2002) 

have shown the existence of an upper level trough over the Red Sea. Upper-

level trough emerges from the northern hemisphere cold and moist region 

contributes to above normal FMAM rains over northeast, central, east and Rift 

Valley regions, while it causes unseasonal rains during November-January, 

which is the main crop harvesting period over Ethiopia.  
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Fig. 6: NCEP reanalysis* climatology of Feb-May 1981-2010, a) sea level 

pressure (mb), b) 500mb vector wind (m/s), c) 850mb vector wind (m/s or 

m.sec-1) and d) 200mb vector wind (m/s). 
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Fig. 7: NCEP reanalysis* climatology of June-September 1981-2010, a) sea 

level pressure (mb), b) 600mb vector wind (m/s), c) 850mb vector wind (m/s) 

and d) 200mb vector wind (m/s). 

Low Level Jet 
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Fig. 8: NOAA/NCEP reanalysis* climatology of October-January 1981-2010, 

a) sea level pressure (mb), b) 850mb vector wind (m/s), c) 500mb vector wind 

(m/s) and d) 200mb vector wind (m/s). 

*NOAA/NCEP Reanalysis data and map room were explored from the 

NOAA/OAR/ESRL PSD, Boulder, Colorado, USA;  http://www.esrl.noaa.gov/psd/. 

 

vii) Role of ENSO 

 

NOAA (2013) defines ENSO state (e.g., El Niño or La Niña) as a departure 

from normal of the sea surface temperature (SST) in the Niño 3.4 region of 

magnitude 0.5°C or more, lasting for at least five running three-month periods 

over the tropical Equatorial Pacific Ocean. The main ENSO signal is found 
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during the northern summer (Camberlin 2009), at which time a negative 

correlation is found with the Niño 3.4 index, depicting lower than normal 

rainfall in the years of higher sea-surface temperatures (SST) in the eastern 

equatorial Pacific (i.e., El Niño years). It is argued that each ENSO state (El 

Niño, neutral or La Niña) has had its own influence on the rainy or dry 

season. For each season the NCEP Reanalysis data were used to compute 

composite SST anomalies for La Niña and El Niño years (Fig. 9).  

 

Okumura and Deser (2010) have shown that there is a strong asymmetry in 

the duration of El Niño and La Niña. In this case, they have pointed out that 

both El Niño and La Niña typically begin in late spring–summer and intensify 

through the equatorial cold season. They also noted that most El Niño events 

terminate rapidly after peaking toward the end of the year. In contrast, many 

La Niña events persist through the following spring–summer and re-intensify 

in winter; some even last through a third year and again strengthen during 

winter.  
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Fig. 9: Surface NOAA Oceanic Indices of SST composite anomalies (°C) for 

some La Niña and El Niño years during 1981-2010; a) and b) for February to 

May; c) and d) for June to September and e) and f) for October-December 

seasons. Anomalies are computed from 1981-2010 SST climatology.  

 

The impact of ENSO on Ethiopian rainfall are widely documented (e.g., 

Degefu 1987; Seleshi and Demarée 1995; NMSA 1996; Bekele 1997; 

Camberlin 1997; Tsegay 2001; Gissila et al. 2004; Segele and Lamb 2005; 

Diro et al. 2011). Most of these documents showed that the warm phase of 

ENSO (El Niño) is associated with suppressed rains during the main wet 

season (JJAS) over north and central Ethiopia. It may cause severe drought 

and sometimes famine. On the other hand, it enhances rainfall in FMAM and 

ONDJ seasons, which mainly affects various parts of Ethiopia. In contrast, La 

Niña has an opposite impacts on the seasonal rainfall; flood in JJAS and 

drought in FMAM and ONDJ seasons. 
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During JJAS, suppressed rainfall has been observed to accompany El Niño 

over much of Ethiopia, often with economic catastrophe. As shown in Fig. 9 

(for 1970 onward), lower tercile all-Ethiopian JJAS seasonal rainfall occurred 

in 1965, 1972, 1979, 1982, 1984, 1987, 1990, 1991, 1995, 1997, and 2002. 

More than half of these summers coincided with El Niño events; none 

occurred during La Niña. Upper tercile rainfall conditions occurred in 1961, 

1964, 1970, 1973, 1974, 1975, 1977, 1978, 1981, 1988, 1994, 1996, 1998, 

1999, and 2003; more than half of these matched La Niña events, while only 

one (1994) occurred with El Niño. 

 

The effect of ENSO on rainfall is seen in composite analyses for selected 

individual stations by month. JJAS monthly rainfalls are averaged for El Niño, 

La Niña, or near-neutral conditions, using the classification system of the 

NOAA/Climate Prediction Center (CPC). Here, all months of any year are 

assigned the ENSO phase existing during JJAS of that year, so that impacts 

of ENSO events occurring during the Belg and Bega seasons are not directly 

represented. Mean monthly rainfalls seem to be enhanced during La Niña 

years in regions where JJAS is the major rainy season, due to greater 

duration of the rainy season (Segele and Lamb 2005), and increased rainfalls 

during individual months of the rainy season. Examples of stations from 

different parts of Ethiopia having a clear ENSO influence are shown in Fig. 

10. 

 

Fig. 11 illustrates the geographical distribution of the correlation between the 

SST in the Niño 3.4 index region and Ethiopian JJAS rainfall at the 78 

stations, based on 1970–2004, keying SST to individual months prior to 

summer (Fig. 11a–c) and SST during JAS (Fig. 11d). The association of 

summer rainfall with ENSO in early pre-summer months (January–April) is 

weak, and increases as the time of the ENSO state approaches the beginning 

of the rainfall season. Statistically significant (≥0.34) negative correlations are 

found between JJAS rainfall totals and Niño 3.4 SST occurring nearly 
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simultaneously (in JAS) mainly in the northern half of the country but also in 

the southern highlands and southwest Ethiopia (Fig. 11d). In the 

climatologically dry southeastern lowlands, associations with ENSO are 

weak. The moderate negative simultaneous correlations (-0.4 to -0.6 at some 

locations) imply that rainfall forecasts would have useful skill levels if the 

summer Niño 3.4 SST could be predicted beforehand. Correlations between 

JJAS rainfall and Niño 3.4 SSTs of pre-season months may be of some use 

only for May, where some correlations are stronger than -0.4. The lack of a 

stronger relationship between the May ENSO state and rainfall is not 

surprising, as the ENSO condition may change in either direction between 

April and June (Tziperman et al. 1998). For example, high Niño 3.4 SST in 

May could be due to an El Niño that had matured earlier and would likely 

dissipate before July, or to a newly emerging El Niño that was absent in 

February and March. Predicting ENSO is known to be difficult during the 

northern spring. Later we will discuss an indicator of summer ENSO based on 

the change of the May SST anomaly from that of a few months earlier. 
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Fig. 10: Standardized JJAS rainfall anomalies of all-Ethiopian rainfalls for the 

1970–2004 period. Years having El Niño, La Niña, and neutral conditions 

during JJAS, based on the NOAA/CPC ENSO classification, are denoted by 

the patterns inside the bars. 

 

 

Fig. 11: Spatial distribution of correlation between JJAS rainfall for 78 stations 

in Ethiopia and Niño 3.4 SST in (a) January, (b) April, (c) May, and (d) JAS. 

Computed for 1970–2004, values of 0.34 or greater in magnitude are 

statistically significant at the 95% confidence level. 
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2.3 Climate Prediction 

 

2.3.1 Background 
 

 

American Meteorological Society‘s Glossary of Meteorology (AMS 2013) 

defines climate prediction as the method by which climate of a region is 

predicted during some future period of time. Climate predictions prepared in 

the form of probabilities of anomalies of climate (e.g., temperature, rainfall), 

with lead times up to several seasons. This could be done using either by 

simple climatological and persistence approaches or by employing the most 

sophisticated Ocean-Atmosphere coupled multilayer general circulation 

models. The predictability skill of climate under consideration, however, need 

due attention before they are in use for operational purposes. The motive of 

this section is not reviewing the overall development of climate prediction 

science but it entails to provide highlight on some of the key issues revolving 

around predictability skill of tropical climates and its time evolution. 

Hastenrath (1986) clearly underscored that large interannual variations of 

rainfall are an intrinsic part of tropical climate and can have severe impacts 

on human. He further noted that World Meteorological Organization (WMO) 

and the U.S. National Climate Program (National Climate Program Office, 

NOAA) showed their interest in declaring climate prediction as a central 

objective. Charney and Shukla (1981) pointed out that climatic variability in 

the tropic should be more predictable because it was in large part of slowly 

varying anomalies of lower boundary of the atmosphere. 

 

Since the middle of the twentieth century, many environmentalists have 

tirelessly campaigned to bring the issue of environmental change to the 

attention of international society. In the late nineteen seventies and early 

eighties the connections between day-to-day activities and climate change 

http://amsglossary.allenpress.com/glossary
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and shorter-term environmental abnormalities were explained. For shorter 

timescales, scientists have introduced techniques to improve environmental 

monitoring of institutions across the globe. Also, forecasting of short-range 

weather variations has attained successful for many regions with various lead 

times depending on the predictability, which may vary seasonally. However, 

there were few accomplishments in long-range climate predictions despite 

some efforts made by Sir Gilbert Walker (Cane 2000) near the turn of 

twentieth century. Studies leading to significant progress in weather 

forecasting had taken place in the 1960s by Bjerknes (Cane 2000). An 

introduction of physical modeling on the climate scale, which encompassed 

the predictability of sea surface temperature (SST) over the eastern tropical 

Pacific Ocean, was first established by Zebiak and Cane (1987). These 

significant breakthroughs laid the cornerstone for the predictability of 

seasonal climates over many tropical, and some extra tropical, regions. 

 

Importance of ocean SST and its physical forcing for climate anomaly 

patterns was investigated for a particular region. For instance, Zeng (2003) 

presented evidences that global sea surface temperature is a major forcing 

for climate in the Sahel region. Using principal components analysis, Giannini 

et al. (2003) also showed the low-frequency variability of Sahel rainfall is 

closely related to a largely tropical sea surface temperature anomaly pattern 

that spans the Pacific, Atlantic, and Indian oceans. Further expansion in 

climate modeling can provide good evidence for the short and long-term 

rainfall variations observed over the region. Progress in climate modeling 

arguably improves the prediction skill for tropical climate, despite the fact that 

some of the techniques need enormous to implement in the developing 

nations. However, some of the model methods may be shortened to portable 

but nonetheless skillful simplified dynamical model or statistical (or empirical) 

models are needed for smaller spatial scales.  
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Various statistical techniques have widely applied to modeling rainfall 

variability on different timescales. Osman and Shamseldin (2002) examined 

the influence of ENSO and the Indian Ocean SST on rainfall variability in the 

central and southern regions of Sudan. They have shown that the driest year 

highly correlated with the warm phase of ENSO and Indian Ocean SST, and 

so that developing quantitative rainfall prediction models using ENSO and 

Indian Ocean SST is possible. Unganai and Mason (2002) applied an 

analysis of variance approach to assess the predictability of long-range 

prediction of Zimbabwe summer rainfall. They found that close to 70% of the 

total variance in Zimbabwe summer rainfall is potentially predictable at long-

range time scale. Using a statistical approach, Mason (1998) assessed the 

seasonal forecasting of South African rainfall using a non-linear discriminant 

analysis. Barros and Silvestri (2002) applied canonical correlation analysis in 

the study of the relation between rainfall in southeastern South America and 

SST in the subtropical south-central Pacific Ocean. Besides, Nazemosadat 

and Cordery (2000) have shown statistically that ENSO induces significant 

rainfall anomalies in northwestern Iran in autumn, making possible rainfall 

prediction because the summer SOI was good indicator of the behavior of the 

autumn ENSO state, and thus rainfall, well in advance. Delsole and Shukla 

(2002) showed the potential of statistical methods in selecting skillful linear 

prediction models based on global parameters such as ENSO, NAO, and 

others, for predicting Indian monsoon rainfall. Also Gissila et al. (2004) and 

Diro et al. (2011a) found out that statistical model making use of the 

correlation between SST in the Pacific and Indian Oceans and rainfall in 

various part of Ethiopia in forecasting seasonal rainfall anomalies. Diro et al. 

(2011b) further applied two atmospheric climate models, HadAM3 and 

HiGAM on various dataset to evaluate the seasonal rainfall over Ethiopia. 

Their finding suggested that both models are capturing the different seasonal 

cycles in different regions of the country. 
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Dynamical downscaling of climate modeling technique uses fairly high 

resolution Regional Climate Model (RCM), driven by the output of a relatively 

low resolution General Circulation Models (GCM), to simulate small-scale 

features over a limited region (Hansen et al. 2011). The use of regional 

models to downscale seasonal climate in Africa has been able to provide 

climate information with useful local detail, including sensible extreme events 

(Sun et al. 1999; Sylla et al. 2009). Pohl et al. (2011) further documented the 

capacity of Weather Research and Forecasting Model (WRF) to simulate 

some atmospheric variables, such as rainfall over Equatorial East Africa. 

They have shown that several model configurations have capable to simulate 

regional climate with reasonable accuracy despite biases toward wet and dry 

conditions over some regions.  

 

In climate prediction, proper setting up of spatial domains and zoning is 

essential to identify regions resembles in internal characters and their 

response to external factors. Configuring global or regional models in 

atmospheric variables means parameterization of the model for external 

boundary condition forcing. Accuracy of climate prediction model is then 

verified against observed or climatological values.  Documentation of the skill 

of climate prediction techniques over long historical period is therefore 

required to evaluate contribution of the method contribute to operational 

forecasts. Climate prediction is realizing climate patterns and identifying 

prospective external factors that influence the climate of a given region. 

Besides, it is also a tool to develop and make suitable test on the skill of 

developed climate models and performing routine forecast verification. In 

forecast verification scheme, forecast producers evaluate their forecasts 

whether they have skill of capturing ground truth for a given timescale. 

Relevance of the forecast verification also helps in boasting confidence 

among the users in the utilization of forecast information. 
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In Ethiopia, an onset and cessation of seasonal rainfall vary considerably 

within few kilometers distance due to altitudinal variations, orientation of 

mountain chains and their physical influence on atmospheric flow. 

Topographic variation, on the other hand, is a good opportunity to 

regionalize the country's rainfall pattern. Flohn (1987), for example, noted 

that Ethiopian mountains created a distinct climatic division across the 

source region of the Blue Nile and its tributaries. Diverse topography and 

strong seasonal variation over the other parts of the country also indicate 

the potential physical justifications to delineate rainfall patterns on various 

spatial scales. Thus, delineating the country into homogeneous rainfall 

zones is primarily to characterize the rainfall variability on a similar spatial 

scale to provide local-specific seasonal climate predictions. Some of the 

rainfall homogenous zoning methods were widely discussed by many 

authors (e.g., Goossens 1985; Puvaneswaran and Smiths 1993; Gadgil et 

al. 1993, Nicholson 1994; Basalirwa 1995; Basalirwa et al. 1999; Gissila et 

al. 2004; Diro et al. 2009). 

  

2.3.2 Seasonal climate predictability skill in Ethiopia 
 

 

The seasonal forecasting systems and techniques used by NMA have been 

documented in several papers (e.g., Bekele 1997; Korecha and Barnston 

2007; Diro et al. 2011a). As seasonal climate predictors, NMA uses indices of 

sea surface temperatures (SSTs) over the tropical Pacific Ocean, the 

Southern Oscillation Index (SOI), the Multivariate ENSO Index (MEI as 

described by Wolter and Timlin (1998]) and the ENSO (El Niño-La Niña) 

outlook obtained from NOAA/CPC. Historical and current Niño 3.4 SSTs (the 

Niño 3.4 region is located in the central equatorial tropical Pacific Ocean) are 
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used to select years with ENSO evolution similar to the current year. Rainfall 

prediction for the current year is then based on rainfall observed in these 

analog years. Monthly SSTs are compared for several months in advance of 

the season to be predicted.  

 

By considering the current and future ENSO states, the best three analog 

years are selected from the primarily listed similar years. This procedure is 

done using graphical and rank correlation techniques. Following these steps, 

the seasonal rainfall of each station is calculated for each analog year that 

the station rainfall in each analog year is expressed as a percentile of the full 

climatology using a percentile statistical approach. Station-based seasonal 

rainfall percentiles (following Gibbs and Maher 1967) are then used to 

calculate tercile categories (0–33; 34–66, and 67–100%) for each 

homogeneous rainfall region. NMA‘s seasonal rainfall forecast is then 

prepared as a probability of the regional seasonal rainfall being below, near, 

and above the climatological normal. The tercile rainfall categories, which are 

more commonly known as the probabilities, refer to the likelihood that the 

region-averaged rainfall will be below, near, or above average as the 

anomalies in seasonal (4 month) rainfall are often large in geographical scale. 

This forecast format is motivated by the simplicity of the forecast presentation 

and is used by many operational seasonal forecast centers. Finally, NMA 

issues the seasonal rainfall forecast for each season (FMAM, JJAS, and 

ONDJ), 1–2 weeks prior to the normal onset date of each season. 

 

The relative skills of the probabilistic forecasts (RPSS) were assessed over 

that of climatology and ENSO-RPSS are calculated for FMAM and JJAS. The 

results reveal that the forecast to have slightly better skill than climatology 

with RPSS values up to 8–9% in a few regions during the FMAM season over 

the regions experiencing bimodal rain types, while in the case of JJAS the 
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RPSS is somewhat lower (4–6% in five of the eight regions). Although the 

RPSS indices are weak, they are all positive, indicating the presence of some 

predictability skill for both seasons over Ethiopia. 

 

In order to evaluate the performance of seasonal rainfall forecast in Ethiopia, 

yearly national RPSS values for the period 1999–2011 are calculated for the 

FMAM and JJAS seasons (Fig. 12). The values are computed by averaging 

RPSS of each station (thus, it is bias to the regions with many stations). The 

results showed that the forecast system has positive skill on a national level 

except for the dry FMAM season of 2002 and 2009 and during JJAS 2000, 

2004, 2005, and 2010. The highest skills (above 10%) are found in 2005 and 

2011 for the FMAM season and during 2002 and 2009 for JJAS. With few 

exceptions the nationally averaged RPSS scores are slightly positive (Fig. 

12). 

 

Fig. 12: Mean yearly RPSS values for FMAM and JJAS seasons for 

Ethiopia. Negative (positive) values indicate poor (good) forecast skill.   
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3 Data 

3.1 Climate Data 

 

Meteorological observations began in Ethiopia at few sites around the middle 

of 19th Century. Since the beginning of 20th Century few stations from central, 

northern and southwestern Ethiopia have continued to recording rainfall and 

temperature despite many missing values (Conway et al. 2004). However, 

meteorological stations networks significantly increased after 1950s when the 

importance of weather information realized for water and agricultural sectors. 

In present days, NMA and partner institutions are administering more than 

one thousand meteorological stations (Fig. 13) of different classes, 

representing various climatic regimes of the country (NMA 2013). Climate 

data used in the analysis of the predictability skill and develop prediction 

model, create homogeneous rainfall zones, perform forecast verification on 

seasonal rains and evaluate the severity of drought and its tendencies are 

based on Ethiopian historical monthly rainfall data. Daily rainfall data from the 

same source are also in use during quality checking, filling missed data and 

for the case study over Ethiopia. Long-term monthly climatological rainfall 

values for Ethiopian meteorological stations and seasonal rainfall forecast 

products also extracted from NMA‘s data bank. Besides, NMA‘s newly 

assembled satellite rainfall estimate merged with station rainfall data, which 

have duration of 1983 to present are also widely used.   
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Fig. 13: Spatial distribution of Ethiopian meteorological stations (NMA 2013). 

Background of the map shows Regional administrative regions of Ethiopia. 

 

Quality controls on climate data were critically performed based on WMO 

(1986) method for meteorological station data. At beginning, daily rainfall 

recorded at each station was checked against nearby principal stations and 

inspected if there are suspected outliners. The quality of monthly rainfall 

totals then validated and rechecked before the seasonal totals were 

calculated. In Paper II, the period 1971-2000 were used as climatological 

base in creating seasonal and annual mean national rainfall maps, which was 

consistent with that of NMA‘s official climatological maps. The proportion of 

missing data used in this paper is low, with few stations having at most 10% 

of missing data. Missing months were estimated by interpolating data from 

the highly correlated stations within a reasonable distance away. Similar 

quality control was also done for the rainfall data (for the periods, 1951-

2010/11), which were also used in the same paper I as well as Paper IV. 

Along the border regions, where there are scarce national data, we used 

some neighboring stations from the Nile Basin data set available at 

Geophysical Institute (GFI/UIB), especially for Paper II.  In Paper IV, for each 

homogeneous rainfall zones constructed in Paper I, a time series of monthly 
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precipitation for January 1970–May 2011 was made, based on monthly data 

for 238 gauge stations obtained from NMA. Furthermore, merged station-

satellite data, which have duration of 1983-2010, extracted at the 162 station 

locations and 717 random locations are also examined for the validity and 

stability of rainfall classification as well as in quantifying the performance of 

seasonal rainfall in Ethiopia. The monthly climatology of each station was 

calculated and averaged over the stations in the zone to produce the zone 

climatology. 

 

3.2 Atmospheric and Oceanic Indices 

 

The National Centers for Environmental Prediction (NOAA/NCEP) and 

National Center for Atmospheric Research (NCAR) have cooperated to 

perform data analysis assimilation on global atmospheric fields using 

historical data from 1948 to the present. The NCEP/NCAR Reanalysis is a 

project (Kalnay et al. 1996) used to reanalyze historical meteorological data 

using state-of-the art global data assimilation systems and a database as 

complete as possible. Climatological patterns were drawn and analyzed for 

2.5° by 2.5° grid for three seasons over Ethiopia. For spatial analysis, we 

used an algorithm available in Earth System Research Laboratory Physical 

Science Division (NOAA/ESRL/PSD) and generate seasonal climatology and 

anomaly maps of some oceanic and atmospheric field for the selected 

constant pressure levels (NCAR 2013).   

 

For Paper III, we used global SST from the National Oceanic and 

Atmospheric Administration/National Climatic Data Center (NOAA/NCDC) 

Extended Reconstructed Sea Surface Temperature version 2 (ERSSTv2) 

historical dataset (Smith and Reynolds 2004), with 2° by 2° resolution for the 
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period 1970–2004. For Paper I and II, improved Extended Reconstructed 

SST version 3 (ERSST.v3) have been used from NOAA/NCDC (Smith et al. 

2008). Classification of ENSO into El Niño, La Niña or neutral state made 

according to NOAA‘s ENSO category. NOAA defines non-neutral ENSO state 

as a departure from normal of the SST in the Niño-3.4 region of magnitude 

0.5°C or more, lasting for at least five running three-month periods. In Paper 

IV, we used ERA-Interim reanalysis data in order to describe anomalies in the 

moisture flux field in the spring and summer of 2009. ERA-Interim is produced 

by the European Centre for Medium-Range Weather Forecasts at a 

resolution of about 0.75° latitude and longitude, with 60 vertical levels and a 

4-D variational assimilation system (Simmons et al. 2006; Uppala et al. 2008; 

Berrisford et al. 2009). 
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4 Summary Results from the Papers 

 

This thesis aims to examine the performance of seasonal forecast, spatial 

coherence of rainfall regimes and propose skillful prediction models for the 

main rainy season in Ethiopia. The results as generated from the present 

study have been presented in four papers. 

 

The first manuscript provides an overview of NMA‘s operational seasonal 

rainfall prediction skills in various rainfall regimes of Ethiopia. The second 

manuscript provides spatially coherent homogeneous rainfall regimes as the 

main platform for developing region-specific climate prediction model. The 

third paper deals with the construction of multivariate statistical seasonal 

rainfall based on ENSO indices for the main rainy season in the major 

portions of Ethiopia. The fourth manuscript provides an overview of drought 

episodes and precipitation tendencies in all parts of Ethiopia during the last 

decades. 

 

4.1 Paper I: Seasonal rainfall forecast Validation 
 
 

Korecha D. and Sorteberg A. (2013): Validation of operational seasonal 

rainfall forecast in Ethiopia. Published online in the Water Resources 

Research, VOL. 49, 7681–7697, doi: 10.1002/2013WR013760. 
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This paper is aimed to evaluate the skill of National Meteorological Agency of 

Ethiopia seasonal rainfall forecast issued for February-May (FMAM) and 

June-September (JJAS) rainy seasons during the period 1999 to 2011. 

 

The verification techniques we employed for this study are able to assess 

both the direction and magnitude of seasonal rainfall forecast biases. The 

results reveal that the forecast under-forecast below average rainfall in all 

regions in the FMAM and JJAS seasons. In contrast, the forecast was 

substantially biased toward the near average category in all regions both in 

FMAM and JJAS In general, above average rainfall occurred on average 28% 

of the cases during period 1999 to 2011 as compared to the reference 

climatological base period (1971-1998). The bias of the prediction system 

towards near average indicates lack of forecast sharpness in predicting 

events deviating from the normal. 

 

When the skill of a seasonal forecast is further examined, the probabilistic 

value assigned for each category shows that near average rainfall forecast 

category was forecasted to be the most probable event, while the below and 

above average categories were forecasted as the most likely is less frequent. 

NMA‘s forecasting system sometimes forecasts the above average category 

as most probable for low rainfall years. This under-forecast of severe dry 

events may be a result of the fact that there is a greater reluctance to assign 

high probabilities for below average than for above average rainfall since in 

many parts of the country a warning of dry conditions would be considered 

more serious than wet conditions.  

 

The aggregated RPSS for each homogeneous rainfall region shows positive, 

but low predictability skills. The RPSS values for FMAM are slightly higher 
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than for the JJAS season, indicating that the short rainy season has been 

predicted slightly better than the main rainy season. On spatial scale, among 

the eight homogeneous rainfall regions, the forecast skill is above the 

climatology only for three of them (eastern parts of the country) during the 

FMAM season. For the JJAS season, however, the forecast system exceeds 

the climatological chance (0.33) in four of the eight homogeneous regions 

(two regions in the west and two in the south).  

 

The results further show that the forecast attains slightly better skill than 

climatology with RPSS values up to 8-9% in a few regions during the FMAM 

season, while in the case of JJAS the RPSS is somewhat lower (4-6% in  5 of 

the eight regions). We argue that although the RPSS indices are weak, they 

are all positive, indicating the presence of some predictability skill for both 

seasons over Ethiopia.  When RPSS of ENSO climatology is compared with 

the forecast issued by chance (assigning equal chances for the three tercile 

rainfall categories), ENSO information alone can indicate the direction of the 

seasonal rainfall anomalies particularly during JJAS season for northern 

Ethiopia. The results further indicate that a stronger weight on ENSO 

information into the seasonal predictability scheme would improve the 

forecast skill in parts of Ethiopian during the rainy seasons. 

 

Overall, the RPSS results indicate that NMA‘s seasonal rainfall forecasts 

have modest positive skill compared to climatology while compared to an 

ENSO climatology the seasonal forecast performs poorly, particularly over the 

central and northern regions in JJAS. The results also show that more weight 

on ENSO information into the seasonal predictability scheme would improve 

the forecast skill for JJAS rainy season. 
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Based on the overall study results we suggest that NMA should work further 

to make appropriate improvement on the predictability of seasonal rainfall 

systems, especially for below normal rainfall categories. Therefore, further 

work on identifying the underlying rain-producing systems and examine 

closely their physical linkage with larger scale surface indices. Merging 

heterogeneous rainfall regions into one region may also distort the level of 

seasonal forecasting skill over various parts of Ethiopia. In this regard, further 

research on how to separate the country into useful rainfall regions may be 

beneficial to improve the forecast quality. 

 

4.2 Paper II: Construction of Homogeneous Rainfall 
Regimes 

 
 

Korecha, D. and Sorteberg, A., 2013: Construction of Homogeneous Rainfall 

Regimes for Ethiopia. Submitted to International Journal of Climatology. 

 

In the second paper of this thesis, monthly rainfall totals recorded over 162 

meteorological stations from Ethiopia for the period 1951-2009 were 

examined in order to reconstruct spatially-coherent but independent 

homogeneous rainfall regions. Homogeneous rainfall classifications were 

further validated and modified based on merged station-satellite rainfall data 

of fine spatial resolution (of 10-km). Moreover, temporal rainfall patterns of 

Ethiopia were examined to know how sub-continental rainfall anomalies such 

as the Sahel and all-India, correlate with all-Ethiopia rainfall index. Results 

show that all-Ethiopia rainfall time series is strongly correlated with both the 

Sahel and all-India summer rains. Results from this study therefore, suggest 

that the scientific findings on the Sahel and India rainfall, which are well 

documented and more comprehensively studied than that of the Ethiopian 
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rainy seasons, can be beneficial for understanding and make use of the all-

Ethiopia rainfall variability. 

 

A national rainfall index, which was computed for all-Ethiopia rainfall time 

series based on the 250 stations, indicates that Ethiopia on average (for the 

period 1971– 2000) receives 1115 mm of rainfall annually. From this crude 

mean value, which is biased toward regions with a dense station network; 

655, 310 and 150 mm rainfall totals are the climatological values for Kiremt 

(Jun-Sep), Belg (Feb-May) and Bega (Oct-Jan) seasons, respectively. It 

follows that each of this season contributes 59%, 28% and 13% (Kiremt, Belg 

and Bega, respectively) to the mean annual rainfall totals. Large scale 

atmospheric circulation anomalies related to sea surface temperature 

anomalies such as El Niño or La Niña events combined with regional and 

local atmospheric circulation anomalies induced significant anomalies in 

Ethiopian rainfall. It has been observed that El Niño and La Niña usually 

suppress and enhance Kiremt (summer) rains while they behave differently in 

the case of Bega (winter) and Belg (spring) seasons.  

 

Regions of strong principal components (PC1) loading receive maximum 

rains in June-September, and small rains during March-April-May, while the 

region often receives less rain showers in December-January. PC2 and PC3 

loadings show distinct seasonality of rainfall patterns for southwest-west and 

south-southeast regions, respectively. The two PC loadings clearly 

emphasize the non-Kiremt-rain benefiting region of south-southeast in 

contrast to the Kiremt-rain benefiting regions of the western and northern half 

of the country. The K-means cluster analysis (CA) method created twelve 

rainfall clusters and the stations that are grouped in each cluster match well 

geographically and exhibit the same seasonal rainfall characteristics. Results 

from CA clearly showed the presence of rainfall dissimilarities across the 
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regions. Hence, the presence of numbers of rainfall clusters suggest that 

rainfall patterns over Ethiopia vary with short distance, while modulated by 

topographic variation and orientation, large-scale atmospheric circulation 

systems, moisture track and local dynamical conditions. 

 

Thus the results presented in this study confirm that much of the large scale 

meteorological systems known to influence the Ethiopian rainfall distribution 

are fairly used in justifying the dissimilarities of twelve homogeneous rainfall 

regions. Besides, the study reveals that local rainfall variations that are 

recurrently influencing various social and economic practices can be more 

identified on the present homogeneous rainfall regime than those based on 

earlier regional classification. It is believed, however, that further detailed 

spatial analysis of rainfall on various time scales is needed to obtain finer 

information relevant for localized societal activities. 

 

4.3 Paper III: Predictability of June–September 
rainfall 

 
 

Korecha, D. and Barnston A., 2007: Predictability of June–September rainfall 

in Ethiopia. Published on the Monthly Weather Review, 135:628–650. 

 

In this study, the predictability of main rainy season (JJAS) over Ethiopia was 

examined using multivariate statistical techniques for the period 1970-2004. 

This study shows the presence of strong teleconnection linkage between 

major JJAS rain-benefiting regions of Ethiopia, which was consistent with 

previous findings. Lag relationship calculated between JJAS rainfall and 

spring months SSTs showed promising results for seasonal rainfall prediction. 
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As a result, the northern hemisphere spring barrier is more than halfway 

traversed by the end of May and a moderately skillful summer forecast can be 

made at this short lead time. When and if ENSO can be better predicted 

through this difficult time of year, longer lead forecasts could be made for 

Ethiopian summer rainfall. Pre-summer ENSO state, and its direction and rate 

of evolution, could be used as a simple statistical precursor during the 

summer season ahead, and consequently the summer seasonal rainfall. 

  

Seasonal rainfall teleconnections to SST regions other than the tropical 

Pacific are considerably weaker and of smaller spatial scale, and include the 

Indian and Atlantic Oceans both during and preceding summer. Pertinent to 

examining the linkage of all-Ethiopian JJAS to SST and SOI indices, the main 

finding is that northern summer ENSO condition is overwhelmingly the single 

most important factor governing the JJAS rainfall across Ethiopia, excluding 

the southern/southeastern lowlands. SST anomalies in the Atlantic and Indian 

Oceans appear to matter far less. More regional climate and weather 

processes were not investigated here, but could be tied into this larger scale. 

Skillful predictions of Ethiopian summer rainfall hinge upon the best possible 

forecasts of the summer ENSO state from an earlier time. Useful summer 

rainfall predictions are thus potentially achievable using global dynamical or 

statistical models. 

  

The Canonical Correlation Analysis (CCA) defines spatial pattern 

relationships between global SST and JJAS Ethiopia station rainfalls. The 

simultaneous SST–rainfall patterns strongly confirm the impact of ENSO, and 

indicate a lesser role for SSTs near the source regions of monsoonal low-

level systems near southwest India and in South Atlantic. These conclusions 

also apply to the CCA using leading May SSTs. 
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4.4 Paper IV: Drought in Ethiopia – an overview of 
precipitation 

 
 

Viste, E., Korecha D. and Sorteberg A., 2012: Recent drought and 

precipitation tendencies in Ethiopia. Published online in the Theoretical 

Applied Climatology.  doi: 10.1007/s00704-012-0746-3. 

 

This paper aims to quantify the meteorological component of drought 

episodes in Ethiopia since 1971. The standardized precipitation index (SPI), a 

statistical measure that indicates how unusual an event is, making it possible 

to determine how often droughts of certain strength are likely to occur. All 

drought measures were calculated based on accumulated precipitation at 

several time scales. Long-time drought was considered at time scales of 12 

and 24 months, and the 4-month indices for May and September were used 

to describe the spring and summer seasons, respectively. 

 

Analysis of gauge-based precipitation data for 14 Ethiopian climatic zones 

during 1971–2011 justifies the international concern about the recent 

dryness. Some of the last years have been among the driest in this period, 

and in southern Ethiopia, precipitation has declined, both in the spring 

(February–May) and the summer season (June–September). Dry spring 

seasons have characterized the period since 1999, affecting most of Ethiopia. 

The largest relative precipitation deficits have appeared in the southern 

Ethiopia, where this is the main rainy season. The rest of the country has also 

experienced extremely dry springs during the last decade, but no general, 

long-lasting trend can be assumed based on this data set. 
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The spring seasons of 2008 and 2009 were extremely dry in about half of the 

zones, and in 2009, the dry spring was followed by a dry summer. As a result, 

2009 was one of the few years with drought conditions in all of Ethiopia, both 

on seasonal and annual scales. On the national level, 2009 was the second 

driest year in the record, after 1984, and drier than 2002. In the southern 

highlands, 2009 was the driest year in the record, whereas in the rest of the 

country, previous droughts were more extreme. In the three southernmost 

zones, where the spring season is the most important rainy season, the linear 

regression equation we develop show a decline in precipitation both in the 

spring (2.6 mm/year), the summer (2.2 mm/year), and annually (5.4 

mm/year). In the rest of the country, those zones where the summer rains are 

most important, the linear regression analysis does not give us a reason for 

suggesting a corresponding decrease, neither on seasonal nor annual scale.  

 

The spatial drought pattern from year to year varies, to a large extent 

reflecting the variation in the seasonal precipitation cycle between the zones. 

Ethiopian precipitation exhibits great spatial variation, both in the average 

year, and when it comes to interannual variability. This affects the drought 

patterns. In a few years, mainly 1984 and 2009, drought conditions prevailed 

in all of Ethiopia, on both seasonal and annual time scales. In most historic 

drought years, the problem was of a more local or regional character, 

affecting only some parts of the country, and not necessarily in the same 

season. Due to this variation, there were no years without at least mild annual 

drought in at least one zone. If the tendency of dry springs persists in the 

future, the risk of serious drought years may increase in all of Ethiopia; in the 

south because the spring is the main rainy season. In northern and central 

Ethiopia, where the summer is the main rainy season, the outcome is less 

obvious. But unless physical mechanisms act against it, an increase in spring 
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droughts increases the probability of the occasional dry summer having been 

preceded by a dry spring. As a result, droughts may more frequently last 

throughout the agricultural growth season, as in the two driest years during 

1971– 2010: 1984 and 2009. 
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Abstract 

 

Operational rainfall forecasts using the analog method have been issued in 

Ethiopia since 1987. We evaluate the performance of the forecast system for 

February–May and June–September rainy seasons over the period 1999–

2011. Verification is performed using rainfall data obtained from Ethiopian 

meteorological stations covering eight homogeneous rainfall regions used in 

the forecasts. The results reveal that forecasts issued by the National 

Meteorological Agency (NMA) of Ethiopia, for the past 12 years have a weak 

positive skill for all eight regions compared with climatology. In terms of 

ranked probability skill scores, the values are all lower than 10% indicating 

that the forecast skill is modest. The results further suggest that the 

forecasting system has bias toward forecasting near-normal conditions and 

has problems in capturing below average events. In contrast, the forecast has 

some positive skills in ranking the wet years of February–May season, 

particularly over the regions where there is high seasonal rainfall variability 

with significantly positive rank correlations for the above average years. For 

the main season, however, the forecast is not able to rank wet years or dry 
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years. The extreme low and high rainfall events are mostly missed by the 

forecast scheme. The results indicate rather low forecast skill for extreme 

rainfall events in both seasons. Generally, the results indicate that NMA‘s 

forecasts have low but positive skill as it is common with results from other 

forecasting systems for the Greater Horn of Africa region. The under-

forecasting of dry events is the most serious shortcoming of the system. 

 

1 Introduction 

 

With irrigation covering only 1% of the soil that feeds more than 85 million 

people, the link between rainfall and agricultural yield is close in Ethiopia. It 

has been documented that food shortage and scarcity of water have led to 

local and nationwide famines, mainly due to the complete or partial failure of 

short and long rainy seasons over various parts of Ethiopia [e.g., NMSA, 

1996]. The failure of seasonal rainfall is often caused by either misplacement 

or weakening of large-scale seasonal rain-producing systems. Attempts have 

been made to model these systems and factors out that could cause such 

failures in rainfall and numerous statistical and dynamical prediction models 

have been developed worldwide [Goddard et al., 2003; Barnston and Mason, 

2011].  

 

Annual rainfall characteristics of Ethiopia are classified into three rainy 

seasons as documented by many authors [Gissila et al., 2004; Segele and 

Lamb, 2005; Korecha and Barnston, 2007]. These distinct seasons are; the 

dry (October–January), the small rainy (February–May), and the main rainy 

(June–September) seasons. The seasons are locally defined as Bega 

(October–January), Belg (February–May), and Kiremt (June–September). 

Although delineation of distinct regions and rainy seasons are difficult due to 
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the complex topography of the country and high rainfall variability, the present 

forecast verification is done based on the existing homogeneous rainfall 

regimes.  

 

Variation of rainfall depends mainly on an advection of moist air and the 

location and intensity of rain bearing systems over the vicinity of Ethiopia. For 

instance, the westward propagation of weather disturbance developing over 

the Indian Ocean and Arabian Sea as well as southerly moisture flow are 

widely known rain-producing features for the eastern African subregion, 

including Ethiopia [e.g., Nicholson, 2000; Segele and Lamb, 2005]. In Kiremt, 

the rain-producing systems and their features are mostly associated with the 

establishment of synoptic and planetary scale systems such as Inter-tropical 

Convergence Zone (ITCZ), southwest monsoon components, and short-lived 

weather disturbances forming over the Arabian region [Camberlin, 1997; 

Segele et al., 2009a; Diro et al., 2011;  Wolff et al., 2011]. 

 

Seleshi and Demaŕee [1995] indicated that the Indian Ocean is one of the 

main moisture sources for Ethiopian rainfall. Similarly, Camberlin [1997] 

argued that the Kiremt rains (June–September) of Ethiopia rely on moisture 

advection from the Congo Basin through the southwesterly monsoon. 

Mohamed et al. [2005] also indicated that the oceanic sources of atmospheric 

moisture over the Nile basin are the Atlantic and the Indian Oceans. In 

contrast to the Kiremt rain, eastward traversing of midlatitude frontal systems 

often triggers unseasonal rain during reasonably dry seasons (October–April) 

over portions of northern, central, and eastern Ethiopia [Kassahun, 1987; 

Nicholson, 2000]. The skill of the predictability of seasonal rainfall therefore 

depends on an extent toward which the prediction systems could quantify the 

depth and the flow of moisture, regional, and global systems as well as the 

atmospheric dynamics that initiate seasonal rains. 
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Statistical relationships between the Ethiopia rainfall and other meteorological 

parameters or sea surface temperatures have been investigated in a number 

of papers [e.g., Degefu, 1987; Segele and Lamb, 2005; Korecha and 

Barnston, 2007; Diro et al., 2011]. By assessing the lag-time correlations of 

SSTs with seasonal rainfalls of various regions over Ethiopia, the National 

Meteorological Agency (NMA) has issued seasonal forecasts three times a 

year since 1987 as documented by Korecha and Barnston [2007]. 

 

The role of the El Niño Southern Oscillation (ENSO) on the Ethiopian 

seasonal rainfall is well documented and associated hazards often coincide 

with the occurrence of major ENSO events [NMSA, 1996; Camberlin, 1997; 

Bekele, 1997; Tsegay, 1998; Gissila et al., 2004; Segele and Lamb, 2005; 

Korecha and Barnston, 2007; Diro et al., 2011]. More recently, Araya and 

Stroosnijder [2011] documented how various ENSO events disturbed the 

onset and cessation of seasonal rainy season over northern Ethiopia. In 

association to mitigating river floods, Wang and Eltaher [1999] underscored 

the importance of ENSO information for forecasting precipitation over 

Ethiopia. Moreover, Block and Rajagopalan [2007] pointed out that ENSO 

phenomenon is the main driver of the interannual variability in seasonal 

precipitation in the Blue Nile basin, with El Niño (La Niña) events generally 

producing drier (wetter) than normal conditions. Furthermore, Elagib and 

Elhag [2011] provided evidence of an ENSO footprint on seasonal rains over 

about two-thirds of the area of the Sudan. It is, therefore, broadly argued that 

Ethiopian seasonal rainfall performance is strongly linked to ENSO.  

 

Since the beginning of seasonal climate prediction in Ethiopia, NMA has gone 

through continuous improvement in order to enhance the skill of predicting 
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strong seasonal rainfall anomalies for various parts of the country. In recent 

years, research papers have proposed various statistical techniques to 

predict the major rainy season in Ethiopia [Gissila et al., 2004; Korecha and 

Barnston, 2007; Segele et al., 2009a, 2009b; Diro et al., 2009, 2011]. 

However, to what extent these forecast techniques are of better quality than 

the NMA forecasting system is unknown. This is due to the fact that few 

attempts have been made to assess the skill of the operational seasonal 

rainfall forecasts issued by NMA or other regional and international climate 

prediction centers for Ethiopia. To address this we here attempt to assess the 

skill of the NMA‘s operational seasonal predictions in order to provide a 

benchmark against which new climate prediction systems can be measured. 

 

The main objective of the present study is, therefore, to verify the skill of 

seasonal rainfall forecast that have been issued by NMA for the period 1999–

2011 for the February–May and June–September rainy seasons. Although 

ONDJ (October–January) is the dry season over the Kiremt-rain-benefiting 

regions of Ethiopia, it may have better predictability [e.g., Indeje et al., 2000], 

it will not be considered in this study. 

 

The paper is arranged as follows: in section 2, the seasonal rainfall 

forecasting systems used by NMA are presented. The database (archive of 

forecasts and observations) and validation techniques are explained in 

section 3. Section 4 describes and discusses results. Conclusions and 

recommendations are given in section 5. 
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2 Seasonal Rainfall Forecasting System at National 

Meteorological Agency (NMA) 

 

2.1. Background 

 

The seasonal forecasting systems and techniques used by NMA have been 

documented in several papers [e.g., Bekele, 1997; Korecha and Barnston, 

2007; Diro et al., 2011]. In this section, some of the essential components of 

seasonal forecasting and procedures used by NMA are briefly described. As 

seasonal climate predictors, NMA uses indices of sea surface temperatures 

(SSTs) over the tropical Pacific Ocean, the Southern Oscillation Index (SOI), 

the Multivariate ENSO Index (MEI as described by Wolter and Timlin [1998]) 

and the ENSO (El Niño-La Niña) outlook obtained from NOAA/CPC. 

Historical and current Niño 3.4 SSTs (the Niño 3.4 region is located in the 

central equatorial tropical Pacific Ocean) are used to select years with ENSO 

evolution similar to the current year. Rainfall prediction for the current year is 

then based on rainfall observed in these analog years. Monthly SSTs are 

compared for several months in advance of the season to be predicted 

(Figures 1 and 2). For example, in order to predict rainfall of the June–

September (JJAS) season, Niño 3.4 SSTs for January–May of the current 

year are compared with SSTs for the same months in 1970, 1971, etc., and 

analogs (years with similar ENSO evolution) are identified. By considering the 

current and future ENSO states, the best three analog years are selected 

from the primarily listed similar years (Figure 2). This procedure is done using 

graphical and rank correlation techniques. Following these steps, the 

seasonal rainfall of each station is calculated for each analog year that the 

station rainfall in each analog year is expressed as a percentile of the full 

climatology using a percentile statistical approach. Station-based seasonal 

rainfall percentiles [following Gibbs and Maher, 1967] are then used to 

calculate tercile categories (0–33; 34–66, and 67–100%) for each 
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homogeneous rainfall region. NMA‘s seasonal rainfall forecast is then 

prepared as a probability of the regional seasonal rainfall being below, near, 

and above the climatological normal (in this case, the mean from 1970 to the 

year under consideration). The tercile rainfall categories, which are more 

commonly known as the probabilities, refer to the likelihood that the region-

averaged rainfall will be below, near, or above average as the anomalies in 

seasonal (4 month) rainfall are often large in geographical scale. This 

forecast format is motivated by the simplicity of the forecast presentation and 

is used by many operational seasonal forecast centers. Figure 2 (top right 

plot) shows an example of an official NMA rainfall outlook for the JJAS 2010 

rainy season. Finally, NMA issues the seasonal rainfall forecast for each 

season (FMAM, JJAS, and ONDJ), 1–2 weeks prior to the normal onset date 

of each season (Figure 1). 

 

Figure 1. Seasonal rainfall forecasting system of the National Meteorological 

Agency of Ethiopia. 
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Figure 2. Schematic diagram showing analytical steps in the preparation of 

seasonal rainfall forecast by the National Meteorological Agency of Ethiopia. 

 

2.2. Justification for Analog Forecasting Method 

 

The use of analog methods to generate climate forecasts is an attractive idea, 

not the least because of its conceptual simplicity, and many meteorological 

institutions around the world either still use the analog forecasts or have done 

until recently [WMO, 2002]. The analog methods used to forecast rainfall 

anomalies directly, or through the intermediary of an anomaly flow pattern. In 

some cases, they are used more indirectly, e.g., the Australian Bureau of 

Meteorology determines analog years of the Southern Oscillation Index (SOI) 
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as a first step to subsequent analyses [Drosdowsky, 1994]. The techniques 

involve searching of the historical data, identifying previous periods that 

resembled the immediate past period, and predicting the following season‘s 

rainfall anomalies on the basis of what happened on those previous 

occasions. Analog forecasting techniques have been used in climate 

forecasting for a long time. Namias [1968] reviews the early history, and 

Nicholls [1980] presents a somewhat more recent view [Brett and Thompson, 

2006]. There were also revivals of interest in the use of analog forecasting 

techniques at the end of the 1980s, particularly in the United States and New 

Zealand, with the papers [e.g., Barnston and Livezey, 1989; Chapman and 

Walsh, 1991; Livezey et al., 1994; Brett and Thompson, 2006]. In their 

comparative study, Barnett and Preisendorfer [1978] found that the use of 

climate systems evolution in defining an analog sometimes gave a superior 

prediction and at other seasons and lead times gave a worse result. 

 

In identifying the predictors for Ethiopia rainy seasons, previous researches 

guide the selection of the most appropriate predictors from the historical 

archives. In this regard, a number of observational studies have identified the 

use of Equatorial Eastern Pacific Ocean SSTs as potential predictors of 

Ethiopia rainfall anomalies with some lead-time in advance [Korecha and 

Barnston, 2007]. For instance, during the El Niño/La Niña events, Ethiopia 

experiences less/more rainfall in the northern half and more/less in the south 

and southeast regions during the Kiremt season. Shanko and Camberin 

[1998] have found that Indian Ocean sea surface temperatures have an 

important influence on Ethiopia seasonal rainfall. They have found that higher 

SSTs in the Eastern Indian Ocean, for instance, generate a lot of tropical 

cyclones, which are resulted in drier conditions in the north, east, and south 

of the country during Bega and Belg seasons.  
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Various teleconnection patterns are linked to Indian, Atlantic, and Pacific 

Oceans, where they produce different climatic anomalies in various parts of 

Ethiopia [Segele and Lamb, 2005; Diro et al., 2011]. Thus, when predicting 

Ethiopia seasonal rains, it is important to allow for seasonality and regional 

rainfall feedback to various teleconnection indices. However, ENSO-indices 

have well been identified as the potential preseason indicators and thus 

became the basis for the analog forecasting techniques in Ethiopia [Korecha 

and Barnston, 2007]. ENSO indices are being retained year round, but 

allowing these indices to be weighted differently from season to season as 

well as from region to region, depending on the direct linkage between 

regional rainfall pattern and SST anomalies. The analog forecast 

methodology is therefore now run operationally at the National Meteorological 

Agency. As part of NMA‘s long years‘ early warning program on the 

monitoring of climate variability, national seasonal rainfall outlook forums 

usually convene three times a year to discuss seasonal climate anomalies 

over Ethiopia since 1996. A range of guidance material is used, and the 

analog seasonal climate prediction method that identifies 3–5 analog years is 

a very useful prediction tools in providing tercile rainfall probabilities for each 

season in Ethiopia.  

 

The National Meteorological Agency of Ethiopia has therefore integrated an 

analog forecasting technique in its seasonal climate prediction system. The 

major significant analog forecasting technique currently used in NMA is its 

dependence on the scientific innovations and explorations of ENSO. The 

technique has improved seasonal rainfall predictions and has better 

consideration of oceanic longer time memory of SST anomalies, and has 

been used in the countries where the computing facility is very weak. It is also 

widely used in the tropical regions as the predictability skill of seasonal rain is 

relatively dependable. Hence, examining of national rainfall anomalies on the 

basis of ENSO-teleconnection, as well as the extent of the extremity of 
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droughts and flooding can be resolved. This can give a unique opportunity for 

NMA to provide timely early warnings on the adverse effect of climatic 

anomalies within the reasonable lead time. This is unique and to the best of 

our knowledge, no other climate prediction technique has used such simple, 

less expensive computer facility and makes use of few indices because it is 

too expensive to run the state-of-art of modern general circulation models. 

So, this guarantees NMA‘s seasonal climate prediction technique is well 

maintained and acquired the modest capacity in capturing the drier and 

wetter occasions without using any other advanced climate prediction 

models. Thus, this is the superior point of the current analog forecasting 

technique of NMA.  

 

NMA has divided Ethiopia into eight homogeneous rainfall regions. The 

classification is based on; typical rain-producing systems affecting the region 

and spatial and temporal response of respective region to major atmospheric 

and oceanic circulation systems. Although some authors [Gissila et al., 2004; 

Diro et al., 2008, 2009] have proposed modifications to the NMA 

homogeneous rainfall regions, NMA still uses the originally defined eight 

rainfall zones for the preparation of seasonal rainfall forecast (Figure 3). 

Although, NMA has been issuing the seasonal forecasts for many years, the 

overall statistical performance of these forecasts has not yet been 

comprehensively documented. Bekele [1997] made qualitative forecast 

verification on the seasonal rainfall forecasts issued for the period 1987–1996 

and claimed a seasonal rainfall forecast percent correct score of 75% or 

more. From the qualitative forecast assessment, we noted that under-forecast 

of severe dry events may be a result of the fact that there is a greater 

reluctance to assign high probabilities for below average than for above 

average rainfall since in many parts of the country a warning of dry conditions 

would be considered more serious than wet conditions. In this paper, we 

revisit assessment of the forecasts using an objective verification approach. 
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3 Database and Verification Technique 

 

3.1. Database 

 

This verification is made for two rainy seasons over Ethiopia; February to May 

and June to September for the period 1999–2011. Monthly rainfall data from 

NMA meteorological stations (Figure 3) are used. Numbers of meteorological 

stations used in this study varies between 115 and 226. The period 1970–

1998/99 is regarded as base period against which the observed seasonal 

rainfall in each verification year is compared. Missing data for any months are 

excluded from the verification analysis so as to avoid artificial data filling for 

the season under consideration. Seasonal rainfall forecasts that are available 

only in tercile rainfall probabilities maps (Figures 4a and 4b) obtained from 

NMA‘s seasonal climate prediction records. The spatial delineation of zones 

with the same set of forecast probabilities varied from year to year. The 

forecast maps have therefore been recast using the NMA‘s eight 

homogeneous rainfall regions (Figure 3), employing the method described in 

the next section. Meteorological stations used for the forecast verification are 

also organized in their respective homogeneous regions. To indicate the state 

of ENSO, we use the ENSO indices from NOAA/CPC data set as described 

by Korecha and Barnston [2007]. 
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Figure 3. Homogeneous rainfall regions currently used for the preparation of 

seasonal rainfall forecast in Ethiopia. Meteorological stations used in this 

study are marked as ―*‖ 
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Figure 4. Examples of tercile observed and probability forecasts for seasonal 

rainfall over Ethiopia. The two paired maps show forecasted (observed) 

rainfall probabilities for a) FMAM and b) JJAS rainy seasons.  Here, the maps 

are presented as prototype. The seasonal rainfall forecast issued for the 

period 1999-2011, which did not display here have similar configuration. 

 

3.3 Verification Technique 

 

In the preparation of seasonal rainfall forecasts, NMA uses eight 

homogeneous rainfall regions (Figure 3). The tercile rainfall probabilities for 



88 

 

the eight regions are however, as we can see from Figures 4a and 5c often 

merged into fewer regions in the presentation of the forecast. In order to 

verify the forecast we split the merged regions into the eight original 

homogeneous rainfall regions based on Figure 3. This is achieved by 

superimposing Figure 3 on the forecasts maps for each year. When two or 

more forecast zones occupy one homogeneous region, the forecast 

probabilities for the zone that covered substantial portions of the region are 

assigned to the whole of the homogeneous region. This is done for the 

periods 1999–2010 for the June–September main rainy season and for 2000–

2011 for the small February–May rainy season. Meteorological stations used 

for this verification processes (see section 3.1) are then grouped into their 

respective region. Seasonal rainfall totals for each station are then ranked in 

comparison to the values in the base years. For example, JJAS rainfall totals 

recorded at station ‗‗X‘‘ in 1999 is ranked within 1970–1999 rainfall time 

series and its percentile rank is assigned, accordingly. Similarly, the seasonal 

rainfall time series for 1970–2000 are ranked and percentile rank is assigned 

for the year 2000, and so on until all years to be verified scheme are ranked 

according to the rainfall magnitude. This is done for all stations within the 

region. The tercile observed frequency of occurrence for a given season are 

then calculated based on the number of stations having its seasonal rainfall 

ranked in the upper third (above normal), lower third (below normal), or in 

between (near normal) for the given year.  

 

Various verification techniques are described in the literature [e.g., Murphy, 

1988; Jolliffe and Stephenson, 2003; Goddard et al., 2003; Barnston et al., 

2010; Barnston and Mason, 2011]. Based on the format of our data set, we 

employ the following verification techniques to examine the bias, association, 

accuracy, and skill of the forecasting systems. 

 



89 

 

First, we use a diagram presentation to compare the forecasted and observed 

seasonal rainfall probabilities for each tercile category. The diagram indicates 

how well the predicted probabilities of an event correspond to their observed 

probability for each category. The measure does not say if the seasonal 

predicted rainfall is strongly deviated to other tercile categories. 

 

Second, in order to assess any directional bias, which is a systematic 

tendency to assign too much or too little probabilities to particular tercile 

categories, we computed the directional bias (DB) as 100
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where fk and ok and are the average forecasted and observed seasonal 

rainfall probabilities for the years 1999 to 2011 for station k in each region, 

respectively.  The three tercile categories used in this particular case are 

below, near and above normal rainfall probabilities. If there is no directional 

bias the result is always zero. In contrast, if the forecast probabilities are too 

high, DB will be negative and vise versa. 

 

Third, the spearman rank correlation test [Jolliffe and Stephenson, 2003] was 

applied to measure the statistical association between the forecasted and 

observed relative frequencies of rainfall categories in each tercile. Spearman 

correlation coefficient (SRC) is defined as the Pearson correlation coefficient 

between the ranked variables: 
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, where Di represents the difference between ranks of pair 

of data values for n observations. More specifically, Di is the difference 

between the highest rainfall tercile probability assigned for the forecast and 

the corresponding actual rainfall percentile for the ith year. The higher/lower 

value of SRC (approaches to 1) indicates if the forecast is able to rank the 

years within a tercile correctly. For example if the forecast is able to assign 

high probabilities of a wet season to a year that was extremely wet and a 

lower probability of a wet season to a year that was less wet, the forecast will 

have good skill. 

 

In addition to the above verification measures, we also use the ranked 

probability skill scores (RPSS) to the three forecast categories collectively 

[Goddard et al., 2003]. RPSS computes the relative skill of the probabilistic 

forecast over that of climatology, in terms of the forecast ability to assign high 

probabilities to the actual outcome and is defined as the difference in ranked 

probability score between the forecast and a chosen reference forecast 

[Goddard et al., 2003; Wilks, 2006; Barnston et al., 2010]. Thus, the RPSS 

measures the improvement of the multicategory probabilistic forecast relative 

to a reference forecast (usually the long term or sample climatology). It is 

similar to the 2-category Brier skill score, in that it takes climatological 

frequency into account. When RPSS is computed, the probabilities of the 

three forecast categories; below, near, and above averages are arranged in 

ascending order. The ranked probability score (RPS) is then calculated 
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where ok is an indicator which is 1 if the forecasted and 

observed category coincided (for example, both have below average rainfall 

as the most probable category) or 0 otherwise. fk is the predicted probability 
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in forecast category k (for k=1, 2 or 3) for each station and forecast year, and 

N is the number of forecast categories (in this case N=3). Low RPS indicates 

high skill, and vise versa. The RPSS is thus calculated as: 

rr

r

RPS

RPS

RPS

RPSRPS
RPSS 




 1

0 where, RPSr represents the RPS value obtained 

from climatological forecasts. In our case, climatological value is 0.33 (any of 

the three terciles; below, normal and above normal are equally likely to 

occur).  

 

In addition to using climatology as a reference, also we use ENSO as a 

reference to see if the forecast beats a pure ENSO-based forecast. The way 

this is done is that rainfall recorded at each meteorological station was ranked 

within 1970–2011. Then based on ENSO phases (El Niño, Neutral, and La 

Niña) numbers of stations within a region were stratified into terciles (below, 

near, and above average). For the 41 years of JJAS (1970–2010), 10(9) 

years are classified as El Niño (La Niña), and 22 years as neutral. Similarly, 

for 42 years of FMAM (1970–2011), 6(10) years are classified as El Niño (La 

Niña), and 26 years as neutral. 
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Figure 5. Comparison of observed and forecasted the tercile rainfall 

probabilities over the two homogeneous rainfall regions in Ethiopia. Below, 

near and above average rainfall probabilities are paired in the diagrams in 

order to identify the discrepancy between observed and forecasted rainfall 

during Feb-May season. 
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Figure 6. Comparison of observed and forecasted the tercile rainfall 

probabilities over the two homogeneous rainfall regions in Ethiopia. Below, 

near and above average rainfall probabilities are paired in the diagrams in 

order to identify the discrepancy between observed and forecasted rainfall 

during Jun-Sep rainy season. 
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4 Results and Discussion 

 

4.1. Categorical Forecast Skill 

 

The seasonal forecasts were evaluated to see if there is any directional bias. 

It can be seen from Table 1a that the forecast under-predict below average 

rainfall in all regions in the FMAM season. The under-forecasted value ranges 

from 27 to 45%. The same tendency for under-forecasting dry conditions is 

seen in JJAS (Table 1b). In contrast, the forecast was substantially biased 

toward the near average category in all regions both in FMAM and JJAS 

(Tables 1a and 1b). In general, above average rainfall occurred on average 

28% (not shown in Tables 1a and 1b) of the cases during period 1999–2011 

as compared to the reference climatological base period (1971–1998). Whilst, 

the near average forecast probabilities remained above 45% exceeding the 

actual ‗‗probabilities‘‘ (Tables 1a and 1b). The bias of the prediction system 

toward near average indicates that lack of forecast sharpness in predicting 

events deviating from the normal.  

 

Table 1. The bias in forecast probabilities for 3 tercile categories.  (a) FMAM 

rainfall forecasts (b) JJAS rainfall forecasts. Numbers with symbol ―↓‖indicate 

that the forecast system was under forecasted of observed rainfall is being 

under-forecasted by the forecast while ―↑‖ indicates over-forecasting.  

a) 

 

Rainfall region 

Directional skill of the seasonal forecast (%) 

Below 
average 

Near 
Average 

Above average 

I -40↓ 20↑ 52↑ 
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II -27↓ 37↑ 11↑ 

III -38↓ 66↑ -13↓ 

IV -34↓ 38↑ 4↑ 

V -43↓ 32↑ 45↑ 

VI -45↓ 52↑ 40↑ 

VII -31↓ 36↑ -32↓ 

VIII -30↓ 74↑ -13↓ 

 

 b) 

 

Rainfall region 

Directional skill of  seasonal forecast 

(Forecasted/Observed)%-100 

Below 
average 

Near 
Average 

Above average 

I 31↑ 57↑ -50↓ 

II 12↑ 40↑ -23↓ 

III -35↓ 48↑ -11↓ 

IV -28↓ 36↑ -16↓ 

V -2↓ 52↑ -39↓ 

VI -32↓ 32↑ 2↑ 

VII -32↓ 52↑ -9↓ 

VIII -5↓ 6↑ -4↓ 

 

 

a Numbers with symbol ‗‗↓‘‘indicate that the forecast system was under 
forecasted of observed rainfall is being under-forecasted by the forecast, 
while ―↑‖ indicates over-forecasting.  
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To further examine the skill of the seasonal forecasts, the probabilistic value 

assigned for each category is plotted with the observed rainfall percentile in 

Figures 5 and 6 (only shown for Regions I and II). Each paired bar diagrams 

show the comparison of the forecasted versus observed rainfall percentiles 

for each tercile categories. The near average rainfall probabilities were 

forecasted to be the most probable event in the order of 40–50% of the time 

(Figure 5), while the below and above average categories were forecast less 

frequently (22–33% and 24–30% of the time, respectively). From Figures 5 

and 6, we observe that large numbers of stations with the lower tercile are not 

forecasted by the forecast system correctly. For instance, there is a large 

departure between forecasted and observed rainfall in 2002 and 2009, when 

many regions experienced deficient rainfalls. On average, the below normal 

rainfall probability forecast was the highest in 46% (ranging from 40 to 70% 

depending on the region) of the observed below normal rainfall events, while 

below normal rainfall probability was wrongly assigned as the most probable 

in 54% of the events. NMA‘s forecasting system sometimes forecasts the 

above average category as most probable for low rainfall years. This under-

forecast of severe dry events may be a result of the fact that there is a greater 

reluctance to assign high probabilities for below average than for above 

average rainfall since in many parts of the country a warning of dry conditions 

would be considered more serious than wet conditions. 

 

Above normal rainfall probability forecast was the highest in 52% (ranging 

from 30 to 60% depending on the region) of the observed above normal 

rainfall events with a false alarm rate of 41% (Figure 6). In particular, the wet 

events of 2003, 2006, and 2007 were not predicted correctly. The extreme 

low and high rainfall events are mostly missed by the forecast scheme. 

Hence, the results indicate that low forecast skills were attained for strong 

rainfall events both for the two seasons.  
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4.2. Spatial Forecast Skill 

 

Forecast biases, standard deviations of the forecast and observed rainfall 

probabilities and the rank probability scores skill (RPSS) were computed for 

each homogeneous rainfall region in Ethiopia for the FMAM and JJAS  rainy 

seasons between 1999 and 2011 (Tables 2a and 2b). The standard 

deviations show that strong interannual rainfall variability is marked, with 

higher standard deviations of the probabilities of the observed rainfall over 

each region much higher than the standard deviations of the forecasts 

probabilities (Tables 2a and 2b). This indicates that the forecasts issued for 

the seasonal rainfall varied much less than the actual rainfall. 

 

The aggregated RPSS for each homogeneous rainfall region shows positive, 

but low predictability skills. The RPSS values for FMAM are slightly higher 

than for the JJAS season mainly over the Belg rain-benefiting regions (Table 

2). This indicates that the short rainy season has been slightly better 

predicted than the main rainy season over the regions that experience bi-

modal rain type. But the difference is only 0.09, which is unlikely to be 

significant. To investigate whether the forecasting system has skills in all 

homogeneous rainfall regions, the hit rate of the seasonal rainfall forecast 

over each region is shown in Figure 7. As we noticed in the previous sections, 

the forecast skill varied from region to region in addition to its seasonal 

variation. Among the eight homogeneous rainfall regions, the forecast is 

above 0.33 only for three of them (eastern parts of the country) during the 

FMAM season. For the JJAS season, the forecast system exceeds the 

climatological chance (0.33) in four of the eight homogeneous regions (two 

regions in the west and two in the south). 
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Figure 7. Seasonal forecast hit rate, for FMAM and JJAS seasons, scores 

probabilities given for an event mostly occurred for below, near and above 

average rainfall category. Horizontal black line represents the forecast skill 

obtained by chance or climatology. The skill of a forecast is evaluated based 

on distance between the hit and the level that is reached by chance (33%).  

 

Table 2. Statistical values for skill of Ethiopia seasonal rainfall forecasts over 

the homogeneous rainfall regions during 1999–2011 for a) FMAM, b) JJAS 

seasons. Forecast probabilities issued for each tercile category are verified 

against the observed relative frequency at each region. Biases, the difference 

between the average forecasted and observed probabilities are computed 

along with the standard deviations for observed (SDo) and forecasted (SDf) 

and are also included. RPSS are computed based on both individual station 

and regional rainfall performance for each homogeneous rainfall region.   
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a) FMAM season  
 

Rainfall probability Measure of discrepancy 

Region Category Observed Forecasted Bias SDo SDf RPSS 

I Below 0.44 0.26 -0.18 0.28 0.08 0.09 

Normal 0.36 0.44 0.08 0.16 0.04 

Above 0.20 0.30 0.10 0.13 0.05 

II Below 0.38 0.28 -0.10 0.28 0.08 0.02 

Normal 0.35 0.48 0.13 0.16 0.11 

Above 0.27 0.24 -0.03 0.24 0.11 

III Below 0.41 0.25 -0.16 0.25 0.07 0.06 

Normal 0.29 0.49 0.19 0.15 0.07 

Above 0.30 0.26 -0.04 0.20 0.07 

IV Below 0.39 0.26 -0.13 0.31 0.05 0.08 

Normal 0.32 0.44 0.12 0.16 0.05 

Above 0.29 0.30 0.01 0.26 0.05 

V Below 0.46 0.26 -0.20 0.35 0.07 0.05 

Normal 0.34 0.45 0.11 0.19 0.04 

Above 0.20 0.29 0.09 0.22 0.05 

VI Below 0.51 0.28 -0.23 0.31 0.07 0.06 

Normal 0.29 0.44 0.15 0.18 0.06 

Above 0.20 0.28 0.08 0.26 0.05 

VII Below 0.41 0.28 -0.13 0.30 0.07 0.02 

Normal 0.19 0.44 0.25 0.16 0.09 

Above 0.40 0.28 -0.12 0.33 0.08 
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VIII Below 0.46 0.33 -0.13 0.28 0.11 0.08 

Normal 0.25 0.42 0.17 0.15 0.10 

Above 0.29 0.25 -0.04 0.33 0.08 

 

 

b) JJAS season 
 

Rainfall probability Measure of discrepancy 

Region Category Observed  Forecasted  Bias SDo SDf RPSS 

I Below 0.21 0.28 0.07 0.22 0.08 0.03 

Normal 0.31 0.49 0.18 0.16 0.10 

Above 0.48 0.24 -0.24 0.31 0.06 

II Below 0.25 0.22 -0.03 0.20 0.06 0.00 

Normal 0.35 0.49 0.14 0.13 0.01 

Above 0.40 0.29 -0.11 0.19 0.08 

III Below 0.34 0.22 -0.12 0.17 0.07 0.04 

Normal 0.33 0.48 0.15 0.11 0.10 

Above 0.33 0.30 0.03 0.16 0.07 

IV Below 0.30 0.22 -0.08 0.19 0.08 0.05 

Normal 0.37 0.50 0.13 0.08 0.09 

Above 0.34 0.28 -0.05 0.18 0.06 

V Below 0.27 0.26 -0.01 0.18 0.05 0.02 

Normal 0.32 0.49 0.17 0.12 0.05 

Above 0.41 0.25 -0.16 0.20 0.05 

VI Below 0.38 0.26 -0.12 0.26 0.05 0.06 
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Normal 0.36 0.48 0.12 0.16 0.06 

Above 0.26 0.26 0.00 0.18 0.06 

VII Below 0.42 0.29 -0.14 0.29 0.03 0.06 

Normal 0.31 0.47 0.16 0.22 0.06 

Above 0.27 0.25 -0.02 0.34 0.06 

VIII Below 0.30 0.29 -0.02 0.27 0.07 0.05 

Normal 0.42 0.45 0.03 0.19 0.09 

Above 0.27 0.26 -0.01 0.29 0.06 

 

a Forecast probabilities issued for each tercile category are verified against 

the observed relative frequency at each region. Biases, the difference 

between the average forecasted and observed probabilities are computed 

along with the standard deviations for observed (SDo) and forecasted (SDf) 

and are also included. RPSS are computed based on both individual station 

and regional rainfall performance for each homogeneous rainfall region. 

 

The relative skills of the probabilistic forecasts were assessed over that of 

climatology and ENSO RPSS are then calculated and presented in Table 2 

for FMAM and JJAS. Table 2 shows the forecast to have slightly better skill 

than climatology with RPSS values up to 8–9% in a few regions during the 

FMAM season over the regions experiencing bimodal rain types, while in the 

case of JJAS the RPSS is somewhat lower (4–6% in five of the eight 

regions). Although the RPSS indices are weak, they are all positive, indicating 

the presence of some predictability skill for both seasons over Ethiopia.  
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Figures 8a and 8d show the spatial RPSS patterns with climatology as the 

reference in both rainy seasons. Spatial RPSS patterns indicate that the 

forecast system performs better than climatology in much of the country, 

however the values are low. The FMAM season (Figure 8a) has the highest 

forecast skill with values above 10% over south Ethiopia (Figure 8a). In 

contrast, for the JJAS season the RPSS was worse than climatology over the 

southwestern lowlands and eastern portions of the country (Figure 8d). 

Overall, in many regions the forecast skills are slightly higher over the Belg-

rain-benefiting regions in FMAM compared to JJAS. This is possibly related to 

the persistent nature of rainfall producing systems and their strong spatial 

variability during the spring season. In contrast, JJAS rainfall is more 

predictable with relatively higher RPSS over the Kiremt is mainly the main 

rainy season.  

 

Figures 8c and 8f show the maps of RPSS for ENSO climatology and 

climatological references. When RPSS of ENSO climatology is compared 

with the forecast issued by chance (assigning equal chances for the three 

tercile rainfall categories), ENSO information alone can indicate the direction 

of the seasonal rainfall anomalies particularly during JJAS season for 

northern Ethiopia. For this study, ENSO climatology is computed based on 

the Oceanic Nino Index of NOAA as documented in NOAA [2013]. The 

results indicate that injection of more weight of ENSO information into the 

seasonal predictability scheme would improve the forecast skill in parts of 

Ethiopia during the rainy seasons, a conclusion also drawn by Korecha and 

Barnston [2007]. 

 

As the above analysis indicated, the ENSO information alone provided some 

skills in predicting seasonal rains. This would, therefore, further lead us to 

investigate the quality of the seasonal forecast by considering ENSO 
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climatology. Results from Figure 8b show that in FMAM the forecasting 

system have better skills in regions I, III, and VII, while ENSO climatology 

was better in regions IV, VI, and V (Figure 8b). In JJAS, the ENSO 

climatology outperforms the NMA forecast over the major portions of the 

country (Figure 8e) with the exception of the dry southeastern parts. The 

underperformance of the seasonal forecast could emerge probably due to the 

fact that either the forecast system has given too little weight to the ENSO 

cycle or it has underestimated the ENSO impact over the aforementioned 

regions. 

 

Overall, the RPSS results indicate that NMA‘s seasonal rainfall forecasts 

have modest positive skill compared to climatology. In contrast, when the 

forecast is compared to ENSO climatology, it performs poorly, particularly 

over the central and northern regions in JJAS.  
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Figure 8. Spatial distribution of RPSS averaged for the study periods. RPSS 

are computed for FMAM (a-c) and JJAS (d-f) seasons separately based on 

point meteorological stations. Three RPSS are analyzed in order to evaluate 

the skills of NMA‘S seasonal forecast versus climatological reference and 

ENSO climatology (b and d). Also ENSO climatology is compared against 

climatological references (c and f).   

 

4.3 Variation of Forecast Skills With Seasons 

 

 

In order to assess if the forecast is cable to rank the years within a tercile 

correctly, Tables 3a and 3b show the Spearman rank correlations between 

the observed and forecasted tercile categorical seasonal rains. Eight of the 

48 forecast series considered (eight regions, three categories, and two 
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seasons) have a significant positive correlation. Most of the significant values 

were noticed for the above average rainfall forecasts during FMAM, which 

have statistically significant values for the regions in the south (regions III, VI, 

VII, and VIII, Figure 3). In general, the correlations in the JJAS season (Table 

3) are weaker than in FMAM. The weak capabilities of the forecast to be able 

to rank the years within a tercile correctly were partly due to the fact that the 

system is biased toward the near normal rainfall category.  

 

The frequency of stations having seasonal rainfall of below, near, and above 

normal categories each year on a national scale is presented in Figure 9. It 

should be noted that the national rainfall index is biased toward regions with a 

dense station network. For the FMAM season 2000, 2002–2004, 2008–2009, 

and 2011 were severe drought years (Figure 9a), in line with the analysis of 

Viste and Sorteberg [2012]. In contrast, Figure 9b shows JJAS rainfall 

performance in tercile categories. Unlike, FMAM which experienced a higher 

number of years with deficient rains, the JJAS seasons over the period 1999–

2010 seemed relatively stable; severe droughts occurred only in 2002 and 

2009, when more than 60% of meteorological stations recorded below 

average rainfall.  

 

Yearly national RPSS values for the period 1999–2011 are calculated for the 

FMAM and JJAS seasons (Figure 10). The values are computed by 

averaging RPSS of each station (thus, it is bias to the regions with many 

stations). The results showed that the forecast system has positive skill on a 

national level except for the dry FMAM season of 2002 and 2009 and during 

JJAS 2000, 2004, 2005, and 2010. The highest skills (above 10%) are found 

in 2005 and 2011 for the FMAM season and during 2002 and 2009 for JJAS. 

With few exceptions the nationally averaged RPSS scores are slightly 

positive. 
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Table 3. The association between forecasted and observed (a) FMAM and (b) 
JJAS seasonal rainfall Probability for each forecast Category a. 

 

a) FMAM season 

 

Rainfall region 

Correlation between observed and forecasted  

rainfall probability 

Below average Near average Above average 

I 0.16 0.17 0.20 

II -0.22 -0.53** -0.03 

III 0.33 0.26 0.57** 

IV 0.64** 0.01 0.08 

V 0.30 0.34 0.17 

VI 0.37 -0.12 0.41* 

VII 0.16 -0.39* 0.42* 

VIII 0.40* 0.40* 0.52** 

 

 

 

b) JJAS season 

 

Rainfall region 

Correlation between observed and forecasted  

rainfall probability 

Below average Near average Above average 

I -0.28 0.38 0.34 
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II 0.00 -0.21 0.27 

III 0.10 0.21 -0.49* 

IV -0.18 -0.20 -0.17 

V -0.37 0.20 -0.25 

VI -0.25 -0.23 0.18 

VII -0.01 0.10 0.42* 

VIII -0.33 -0.34 0.21 

 

a Correlations are computed using Spearman rank correlations (
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). Values indicated * and ** are statistically significant at 90 

and 95% probability levels, respectively. 
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Figure 9. Nationalized tercile seasonal rainfall categories for: (a) FMAM and 

(b) JJAS rainy seasons. The dash line represents the climatological buffer 

zone (33.3%), which divides the degree of dryness or wetness of each 

season on the national scale. 
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Figure 10. Mean yearly RPSS values for FMAM and JJAS seasons for 

Ethiopia. Negative (positive) values indicate poor (good) forecast skill.  

 

4.4 Reproducibility of Analog Climate Prediction Method 

 

 

The techniques of using the historical analogs to formulate a forecast, known 

as analog prediction method has been used to varying degree of success by 

different researchers [Agarwal et al., 2001]. Agarwal et al. [2001] further 

stated that this method is based on the premise that interseasonal changes in 

the climate system occur similarly from one instance to another, such that 

when the system is in the same state it was for the same season in some 

past years, a sequences of events similar to those which occurred in the past 

instance may be expected now also. For instance, Penland and 

Sardeshmuckh [1995] have reasoned that SST alone contains all of the 

relevant dynamics to a large extent, and thus there is sufficient ground to use 
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SST observations for making predictions for up to nine months. Besides, 

conceptual simplicity, the main advantage of empirical prediction methods like 

analog techniques is that predictions are made using observed data alone, 

whereas in the case of coupled models the predicted SST fields may be 

affected by the way different physical process (e.g., air-sea coupling) have 

been parameterized in the model [Agarwal et al., 2001].  

 

Hammer et al. [2000] stated that the more historical data available the better 

the analog years could be identified that enable to capture possible climatic 

fluctuations and direction of change in climate variables. Development in 

good practices of climatic factors would also facilitate inclusion of effects of 

potential climate variation, which may underline trends in historical data that 

need to be considered when using historical analogs. The point remains, 

however, that of appropriate methods to derive analog years in order to 

connect forecasts and applications need to be viewed as an essential 

component of forecasting research and development [Hammer et al., 2000]. 

The issuing of forecast as simple probability statements is better, but provides 

only general information. In this regard, defining analog years enable the 

policy makers to capture climatic variability in a way that could formulate 

riskiness of alternatives decisions and to be evaluated by examining each 

year in the analog set separately.  

 

Hammer et al. [2000] further pointed out, averages are often a far less 

meaningful static of the probability distribution of outcomes than some 

consideration of the likelihood of exceeding some critical system state be it 

profit or land condition. Hammer et al. [2000] also noted that trends and 

phases of the ENSO have also been employed to provide seasonal climate 

outlook maps and tercile rainfall probabilities, from which forecast maps that 

describe the chances of rainfall in the above, average, or below average can 
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be generated. With this understanding, the analog prediction method that has 

been verified in the case of Ethiopia contains a lot of scientific and application 

merits. In previous sections, it has been well articulated that in order to 

predict anomalies of rainfall amounts for the future season, analog method 

searches for a similar time evolution of seasonal rainfall in the historical data 

set.  

 

Pacific warm (El Niño) and cold (La Niña) episodes based on a threshold of 

±0.5°C for the Oceanic Nino Index (ONI as computed based on 3 month 

running mean of ERSST.v3b SST anomalies in the Nino 3.4 region (5N–5S, 

120–170W) have been used as the main database in order to identify more 

resemblance analog years with the ongoing features from the historical 

episodes or non-episodes [NOAA, 2013]. To demonstrate the reproducibility 

of analog prediction method, we use 760 grid box from the gridded rainfall 

data set that haven generated by blending observed rainfall data from coarse 

stations with satellite rainfall estimates [Dinku et al., 2011; NMA, 2013]. 

Gridded data set has records back to 1983. We assemble gridded rainfall 

data into each homogeneous rainfall zone and compute regional rainfall totals 

for the period 1983–2010. The linear correlation coefficient is then computed 

for each homogeneous rainfall region based on rainfall total and ONI for 

simultaneous and lags seasons. In order to investigate the response of 

regional rainfall to ENSO episodes, the correlation values are plotted against 

the 3 month running season (Figure 11). For the sake of clarity, the results 

reveal that there is a strong linkage between seasonal rainfall and ENSO 

episodes. We therefore strongly argued that ENSO-based analog years 

selection is scientifically sound and can further be explored as well as 

adopted for the tropical regions. Figures 11a and 11b depicted the analog 

methods that are reasonably skillful in indicating the direction of seasonal 

rainfall conditions for both rainy seasons in Ethiopia. One of the limitations of 

analog prediction method, however, is in fact the shortening of lag time 
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relationship exists between ENSO and Ethiopian rainfall. It can be expected 

that the accuracy of the present prediction method will improve as other 

global indices include in the selection of analog years with time.  

 

Generally, the analog prediction technique employed in Ethiopia has been 

compared with the existing regional and international model products (not 

shown here). The results revealed that the present method has the potential 

to predict most of anomalous years during February–May and June–

September rainy seasons, specifically over the regions where rainfall is 

typically deficient. This argument could be further substantiated by 

considering simultaneous relationship that exists between February–May and 

June–September seasons. It is depicted that ENSO episodes 

enhance/suppress February–May/June–September (Figure 11). For instance, 

with the exception of northwest (Regions II, RII) and southwest Ethiopia 

(Regions III, RIII), El Niño usually increases the likely of above average 

seasonal rainfall during February–May (Figure 11a). In contrast, El Niño 

increases the likelihood of below average rainfall during June–September 

season over the major portions of Ethiopia (Figure 11b). As far as the 

scientific merit of analog prediction method is concerned, this method has 

potential particularly over the tropical regions where ENSO is strongly 

teleconnected with seasonal rainfall feature. This is clearly evidenced from 

our analysis as depicted in Figure 11. The method is therefore, highly 

recommended and reproducible for the regions that have similar rainfall 

pattern like Ethiopia, specifically where the climate models suffers a lot for its 

poor performance in capturing seasonal rainfall variation. It seems fairly 

certain that the method will be superior in the field of seasonal climate 

prediction by providing more reliable forecast even in the arena of newly 

emerging complex computational technologies. Because it is very impractical 

to run expensive climate models with the existing limited computing facilities 

and expertise in Ethiopia. 
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Figure 11. Correlation between seasonal rainfall totals of each rainfall regime 

and Niño 3.4 Sea Surface Temperature (SST) as computed for Ocean Niño 

Index (ONI). ONI is computed as an overlapping of consecutive months (e.g., 

JJA means June–August) as documented by NOAA [2013]. The linear 

correlation coefficient is computed between seasonal ((a) FMAM and (b) 

JJAS) rainfall totals (NMA, 2013) and ONI for the same season and 

preceding months. 
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5 Conclusions and Recommendations  

 

In the present study, we evaluated the skill of the National Meteorological 

Agency of Ethiopia‘s operational seasonal rainfall forecast for the February–

May (FMAM) and June–September (JJAS) rainy seasons for the period 

1999–2011. Our analysis shows that the forecasting system is biased toward 

the near-normal category. The hit rate for forecasting the correct tercile is 

above 33.3% (the value that may be obtained by chance) for 8 out of 16 

forecasts series. The ranked probability skill scores (RPSS) which computes 

the relative skill of the probabilistic forecast over that of the climatology is 

positive for all 16 forecasts series, indicating that the forecast has skill 

compared to chance. However, the values are all lower than 10% thus the 

forecasts skill generally ranges from weak to moderate, depending on the 

season and regions under question. 

 

The results further suggest that the forecasting system has problems in 

capturing below normal rainfall events. This is particularly pronounced during 

the February–May rainy season. This under-forecasting of dry events is of 

great practical importance. The forecast showed slightly higher skills for 

above than below normal rainfall categories during both seasons and indicate 

that there is a greater reluctance to assign higher terciles for below normal 

than for above normal rainfall as a forecast for dry conditions would be 

considered more serious and may lead to initiation of drought preventive 

actions. 

 

The forecast has some skill in ranking the wet years of the FMAM season, 

where four of the eight regions have significantly positive rank correlations for 

the above normal years. In the JJAS season, the forecast is not capable of 
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ranking neither the wet nor dry years. The seasonal difference in skill found in 

this study was also noted by Batte and Deque [2011]. The predictability skill 

results computed over the Greater Horn of Africa varied between the MAM 

(March–May) and SON (September–October) seasons, and suggested that 

seasonal rainfall predictability was higher for SON than MAM [Batte and 

Deque, 2011]. 

  

In the above validation, it may seem that the forecast is not performing too 

well, but is not worse than other seasonal forecast attempts. The RPSS 

values that are computed for NMA‘s forecast systems seem to be comparable 

to the values computed for IRI‘s prediction scheme as documented by 

Goddard et al. [2003] and Barnston et al. [2010], the CFS seasonal forecast 

[Sooraj et al., 2012], the ENSEMBLES project [Batte and Deque, 2011], and 

African RCOF forecasts [Mason and Chidazambwa, 2008]. 

 

We have already pointed to the importance of ENSO as potential indicator for 

the Ethiopian rainfall. When RPSS of ENSO climatology is compared with the 

forecast issued by chance and ENSO information alone had some skill in 

indicating the direction for the seasonal rainfall anomalies particularly during 

JJAS season for the northern Ethiopia. The results show that more weight on 

ENSO information into the seasonal predictability scheme would improve the 

forecast skill for JJAS rainy season. However, the information from ENSO 

alone is limited, particularly, due to the seasonality of ENSO and its 

predictability barrier during the northern hemisphere spring [Webster and 

Hoyos, 2010]. In order to make considerable improvements in the forecast 

some of the underlying factors other than ENSO are needed to be identified. 

In this case, Ng‘ongolo and Smyshlyaev [2010] have shown that the phase of 

the QBO prior to the East African March–May (MAM) seasonal rainfall is a 

useful predictor for the seasonal rainfall. They argued that this finding is 
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useful particularly in the case of the East African long rains, which is FMAM in 

this case, for which ENSO provides only limited skill. 

 

We suggest that NMA should work further to make appropriate improvement 

on the predictability of seasonal rainfall systems, especially for below normal 

rainfall categories. From a practical use, quantifying and providing accurate 

forecast for this category would be very beneficial for the user communities. 

The present RPSS analysis shows that the predictability skill for the June–

September rainy season is poor. Therefore, work on identifying the underlying 

rain-producing systems and examine closely their physical linkage with 

larger-scale surface indices such as ENSO or circulation indices (QBO) which 

have been shown to have some predictability skill on the seasonal scale 

should be conducted. Moreover, the selection of homogeneous rainfall 

regions is important as this is the spatial scale for which the forecast is issued 

for. Merging heterogeneous rainfall regions into one region may also distort 

the level of seasonal forecasting skill over various parts of Ethiopia. In this 

regard, further research on how to separate the country into useful rainfall 

regions may be beneficial for the forecast quality. 

 

Major advantages of NMA‘s ENSO-based forecasting technique over the 

other prediction methods are that it automatically finds out closely matching 

patterns from the corresponding historical occasions. This feature 

considerably minimizes data processing requirements. The skills 

demonstrated with this fairly simple method are high and have immense 

potential for practical purposes. It is argue that the on-going statistical and 

dynamical climate prediction models will improve with time with the wealth of 

understanding of the climatic factors and would be able to simulate and 

produce skillful extended-range forecasts of the Ethiopian intraseasonal 

rainfall variability. For the time being, however, a judicious and practical way 
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is to use the existing NMA‘s ENSO-based analog methods for seasonal 

predictions, with reasonably a few weeks in advance.  

 

Finally, in addition to relying on the existing analog method NMA should 

explore the possibility to improve the forecast by using other dynamical and 

statistical forecast techniques that uses the seasonal forecast information 

from available global modeling systems. 
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Abstract 

Monthly rainfalls recorded over 162 meteorological stations for the period 

1951-2009 are investigated to examine the spatial and temporal rainfall 

patterns in Ethiopia. Mean annual and seasonal rainfall are computed, and 

their spatial patterns are analyzed. Among the three seasons currently 

recognized in Ethiopia: June-September, February-May and October-January 

contributes 59%, 28% and 13% for the mean annual rainfall, respectively. To 

identify the coherent regions of seasonal rainfall variability, Principal 

Component Analysis (PCA) is applied on monthly rainfall data. The results 

reveal that the first three principal components (PCs), which accounts for 

67% of the total variance, separate the major parts of Ethiopia in terms of bi-

modal and mono-modal type of Kiremt (June-September) and Belg(February-

May) rains. Also, when Cluster Analysis (CA) is applied on the same data set, 

additional homogeneous rainfall regions are identified. Results from CA 

suggest that when stations are further regrouped into the manageable 

number of clusters, each cluster represents coherent rainfall distribution, with 

similar geographical locations. After applying PCA and CA on monthly rainfall 

of 162 meteorological stations over Ethiopia, and considering the country‘s 

intra-annual rainfall variability, climatological patterns and topography of the 
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country, fourteen homogeneous rainfall regions are identified. However, when 

rainfall station-based classifications were compared with results from merged 

station-satellite rainfall data, the homogenous rainfall regimes became twelve. 

We found that the homogeneous rainfall regimes are spatially more stable, 

coherent and robust to capture temporal and spatial rainfall variability across 

the country. Besides, each rainfall region behaves distinctively and reflects 

the seasonality of rainfall, which includes onset and cessation of seasonal 

rains, rain-type and exposure of each region to seasonal and intra-annual 

rainfall variations. 

 

Key words: Ethiopia, homogeneous, PCA, ENSO, rainfall season, ITCZ 

 

 

1. Introduction 

 

In Ethiopia, an onset and cessation of seasonal rainfall vary considerably 

within few kilometers distance due to altitudinal variations, orientation of 

mountain chains and their physical influence on atmospheric flow. 

Topographic variation, on the other hand, is a good opportunity to regionalize 

the country's rainfall pattern. Flohn (1987), for example, noted that Ethiopian 

mountains created a distinct climatic division across the source region of the 

Blue Nile and its tributaries. Block (2011) and Block and Rajagopalan (2007) 

also noticed climatic peculiarity of northwestern region of Ethiopia. Diverse 

topography and strong seasonal variation over the other parts of the country 

also indicate the potential physical justifications to delineate rainfall patterns 

on various spatial scales. Thus, the main task of delineating the country into 

homogeneous rainfall zones is primarily to characterize the rainfall variability 

on a similar spatial scale. 
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Several attempts have been made to regionalize spatial variation rainfall of 

Ethiopia into homogeneous rainfall zones. For example, Gissila et al. 

(2004) divided the country into five homogeneous rainfall zones for the 

summer (Kiremt) season. Whereas Diro et al. (2008 and 2011) modified 

these classifications and produced six rainfall zones. The differences 

existed between these two works were emerged due to variations in 

number of stations used and seasons. Gissila et al. (2004) classified 

summer season based on 19 rainfall stations, while Diro et al. (2008 and 

2011) used 33 and 45 rainfall stations to categorize spring (Belg) and 

summer rains, respectively. In contrast, the National Meteorological 

Agency (NMA) has been using eight homogeneous rainfall regimes for 

operational seasonal predictions since 1999. Nevertheless, the variation in 

the number of rainfall clusters for Ethiopia has emerged due to the under-

representativeness of regions where no or limited number of 

meteorological stations were available. These led to inconsistencies on 

operational climate forecasts and research activities. It is therefore, 

important to examine the previous works and improve number and spatial 

delineation of rainfall regimes by using more rainfall data and apply 

additional multivariate statistical techniques.  

  

Principal Component Analysis (PCA) and Cluster Analysis (CA) are widely 

used to delineate spatial rainfall patterns (Ramos, 2001). For example, 

hierarchical clustering technique, which requires specific measures of 

similarity, is used to characterize the relationships among the different 

stations and search for stations that have related rainfall variability (Unal et 

al., 2003).  Furthermore, Comrie and Glenn (1998) have documented that 

non-hierarchical K-means clustering technique can be applied to identify 

regions of similar rainfall patterns. In some cases, the combinations of 
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these techniques also employed to produce homogeneous rainfall regions. 

The objective of this study is therefore to analyze the Ethiopian rainfall from 

large to smaller scales and propose a new set of homogeneous rainfall 

regions. The analyses are based on monthly rainfall totals from three date 

sets of NMA. These are; 162 meteorological stations, merged station-

satellite rainfall data (Dinku et al., 2011) extracted at the locations of the 

162 stations, and the same data extracted at 717 randomly selected rainfall 

grid points. Initially thousand random points were selected from the merged 

station-satellite rainfall grids, and then points out the Ethiopian boundary 

were removed. The later two data sets cover the period 1983-2010.  

 

The organization of this paper is as follows: In section 2, data and 

methodology are outlined. Section 3 provides the results, starting with 

improved rainfall climatology of Ethiopia using all available national stations 

(250 stations are used only for reconstructing rainfall climatology) and 

stations bordering Ethiopia (30 stations). It then followed by the discussion of 

larger scale seasonal rainfall variability and ending up with a detailed 

description of the proposed classification of rainfall stations into 

homogeneous regions. Conclusions are given in section 4. 

 

2. Data and Methodology 

 

2.1. Data 

 

To classify Ethiopian rainfall patterns into homogeneous regions, monthly 

rainfall data of surface meteorological stations from National Meteorological 

Agency of Ethiopia was obtained for the period 1951-2009 (Figure 1b). 
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Stations used in the present analysis contained less than 15% missing 

values. Missing values are filled with mean monthly rainfall for the period 

1971-2000. Because of a low number of stations and high proportion of 

missing data during 1950s and 1960s, most of our diagnostic analyses 

were based on the period 1970 to 2009 (Figure 1a). As documented by 

Korecha and Barnston (2007), the sensitivity of including estimated rainfalls 

for these stations were compared with the neighboring stations having full 

actual records. The two versions of rainfall data strongly correlated, and the 

largest absolute differences are nearly insignificant. All rainfall dataset were 

subjected to quality control tests before analysis was done in accordance 

with WMO (1986) procedures (King‘uyu et al., 2000). Efforts were made to 

ensure that the extreme values within the data set are true events, rather 

than the errors. For the 162 stations used in this study, we first performed 

routine quality assessment procedures to evaluate the records of monthly 

value against daily rainfall data. For any data values, we examined each 

case separately against the data from the neighboring stations and 

identified the outliers using linear correlation analysis with the surrounding 

stations. We also examined the stations‘ histories and data consistency 

and evaluated any potential discontinuities and extremes caused either by 

relocation of stations or errors during observations. In this way, we 

obtained complete and reliable monthly records of rainfall for the 162 

stations used in this study. Furthermore, merged station-satellite data, 

which have duration of 1983-2010, extracted at the 162 station locations 

and 717 random locations (Figure 1c) are also examined for the validity, 

verification and stability of homogeneous rainfall classification in Ethiopia.  
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Figure 1. The number (a) and geographical distribution (b) of meteorological 

stations used in this study (c) location of random rainfall ―station‖ extracted 

from the merged station-satellite grid points. Each dot represents position of 

meteorological station both from Ethiopia and neighboring countries. The 

lines in (b) and (C) indicate the regional administrative boundaries of Ethiopia. 

 

2.2.  Methodology 

 

2.2.1.  Classification techniques 

 

To get a manageable number of and stable spatial rainfall clusters over 

Ethiopia, PCA and CA techniques were applied on standardized monthly 
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rainfall anomalies of the 162 stations, merged station-satellite rainfall data 

extracted at the 162 station locations and 717 random grid locations, 

separately. PCA and CA techniques have been employed in many rainfall 

classification studies and produced good results (e.g., Easterling, 1991; 

Gong and Richman, 1995; Baeriswyl and Rebetez, 1997; Buytaert et al., 

2006; Littmann, T. 2000; Mazzoleni et al., 1992; Willmott, 1978). For 

instance, Littmann (2000) applied a hierarchical cluster analysis using the 

squared Euclidean distance and Ward‘s algorithm to classify weather 

types in the Mediterranean Basin. Similarly, Tennant and Hewitson (2002) 

applied Ward‘s clustering method on daily rainfall data in South Africa to 

construct homogeneous rainfall regions. Ellouze et al. (2009) also 

employed PCA techniques to classify South Tunisia rainfall into clusters. 

For the present study we therefore, adopted PCA and CA methods similar 

to those described above. General outline of the selection of rainfall zones 

is given in the flow chart (Figure 2). 

 

In this study, correlation matrix, which represents the temporal correlation 

coefficients based on PCA, was applied on standardized monthly rainfall 

anomalies. Both orthogonal varimax and the oblique oblimin rotations 

(Morrison, 2005), which allow maximization of total variances for rainfall 

recorded at various meteorological stations in Ethiopia were used. The 

numbers of retained principal components (PCs) were determined by 

using the threshold point at which the eigenvalue drops to less than one 

as described by Ogallo (1988, 1989). It should be noted that while PCA 

technique identifies regions with similar variations, it does not provide any 

physical justification for the variation of meteorological elements such as 

rainfall over the substantial number of stations. 

 



132 

 

In the CA, thirty years of monthly rainfall data from 162 stations were 

used. Besides, we also used a newly-constructed data by merging station 

measurements with satellite estimates (Dinku et al., 2011). These gridded 

data cover the whole country at spatial resolution of 10km. Monthly values 

were extracted at the locations of the 162 stations as well as at 717 

random locations. The main objective of including the new data set is to 

check the validity of the classification done with the 162 stations. This is 

very important particularly over data-sparse parts of the country (Figure 1b 

and 1c).  The degree of similarity or dissimilarity between all possible pairs 

of rainfall stations in the rainfall data matrix were calculated using the 

hierarchical cluster analysis with Euclidean distance as the similarity 

measure. Details can be found in Soltani and Modarres (2006). In 

addition, a K-means cluster algorithm, which measures the proximity 

between groups using the Euclidean distance between groups centeroid 

(Jobson, 1992; Jackson and Weinard, 1995), was applied. In the present 

study, the total spatial variances were computed for each identified cluster 

and K-means algorithm. The numbers of clusters are determined using 

hierarchical clustering (Ramos, 2001) and finally plotted on a dendrogram 

(Everitt, 1979). The number of clusters can be further decided based on 

the assumption that the ratio of the sum squared distances between 

stations in each cluster to the total sum squared distances between the 

clusters should be a minimum. Applications of CA and its K-means in 

rainfall clustering have widely been discussed by many authors (e.g., 

Romero et al., 1999; Unal et al., 2003). Running the cluster algorithm for 

the different number of clusters and using the above ratio indicated that 

the optimum number of clusters for Ethiopian rainfall was between twelve 

and fourteen. The results from the hierarchical and K-means clustering 

techniques were compared, and the serial correlations between the 

stations contained in the cluster and cluster averages were used to 

examine the stability of clustered stations.   



133 

 

 

Figure 2. Flow chart showing the methodology applied in this study.  

 

2.2.2. Spatial rainfall interpretation  

 

Various interpolation methods have been proposed for the rainfall 

interpolation, which produce different results using the same rainfall data 

(Buytaert et al. 2006). Ashraf et al. (1997) listed some of these 

techniques, while stating that most of these techniques are applied to 
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interpolate and estimate an unknown rainfall pattern at the location having 

few or no observation computed as a linear combination of neighboring 

observations. According to Tabias and Sals (1985), kriging uses the 

interpolation weights as functions of semivariogram, which provides a 

measure of variance as a function of distance between data points. In the 

present study, we employed kriging interpolation method to map the 

spatial patterns of rainfall over Ethiopia. 

 

2.2.3.  All-Ethiopia rainfall index 

 

All-Ethiopia rainfall, which is nationally-aggregated based on stations data, 

was calculated in order to study how inter-annual and seasonal rainfall 

variations responded to regional and global meteorological indicators (e.g., El 

Niño/La Niña, Sahel and all-India rainfall indices). Two all-Ethiopia rainfall 

time-series data were constructed. The first time-series were constructed 

using only 18 stations, with complete data for the period (for the 1951-1960 

periods, only 18 stations having full data set) 1951-2009. The second rainfall 

time-series data were computed by including additional stations having 

rainfall data in subsequent years for the same period. Statistical computations 

were made as follows: First, all-Ethiopia rainfall totals (mm) for each month 

were computed from averaging all stations in the country. Then, all-Ethiopia 

rainfall was aggregated into annual and seasonal totals for the period 1951-

2009. In order to keep the stability of inter-annual and seasonal rainfall 

variability and accommodate many rainfall stations, the mean and standard 

deviation of rainfall were computed. Finally, the annual and seasonal rainfall 

totals for all-Ethiopia was standardized using mean and standard deviation of 

1971-2000 climatological base periods. In order to examine the impacts of 

ENSO on Ethiopia, seasonal and annual rainfalls are also averaged for El 
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Niño, La Niña and near-neutral conditions as documented by Korecha and 

Barnston (2007). 

 

3. Results  

 

3.1.  The rainfall climatology and moisture flux for Ethiopia   

 

For each season, Segele and Lamb (2005) and Korecha and Barnston 

(2007) computed and analyzed seasonal climatology for Ethiopia rainfall 

using 121 and 187 rainfall stations, respectively. In the present study, 

however, in addition to the 250 stations (1971-2000) within Ethiopia 

(Figure 1) 30 stations from the neighboring countries were used to 

minimize interpolation errors near the Ethiopian border. Our spatial rainfall 

climatology for 1971 to 2000 is comparable to previous studies (e.g., 

Segele and Lamb, 2005; Korecha and Barnston, 2007). In contrast, the 

inclusion of rainfall data from the neighboring countries and a larger 

substantial number of inland stations provides more details to the 

climatological rainfall characteristics of the country. This is particularly true 

for the northeastern, southern and southeastern Ethiopia, which had very 

few stations in previous studies.  

 

As shown in Figure 3a, maximum annual rainfall amounts of 1750 to 

2500mm are concentrated over the southwest-northwest sectors of 

Ethiopia. This is because the persistence of inter-tropical convergence 

zone (ITCZ) and its meridional trough cause substantial amounts of 

rainfall over these regions during Kiremt season. The reversal of southerly 

monsoon winds  across the western sector of Indian Ocean also played a 
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significant role in modulating the seasonal cycle of Ethiopian rainfall 

climatology (Riddle and Cook, 2008; Segele et al., 2009). An intrusion of 

southwesterly wind flows associated with the southwest monsoon 

(Figure3b) and the subsequent ITCZ shifting northward as well results in 

summer rains across the northern half of Ethiopia. In contrast, when ITCZ 

shifts northwards, southern and southeastern regions remain dry 

throughout the Kiremt season, with seasonal rainfall totals of less than 

100 mm (Figure 3b).  

 

One of the underlying factors for the dryness of southern Ethiopia is the 

strong southerly flow that diverges into two when it reaches the periphery 

of the region; most portions form the southwesterly Low Level Jets (LLJ), 

and become the major components of the southwest monsoon system 

(Figure 1b right panel). Southerly flows (Figure 3b) also reach the northern 

Ethiopia and form a converging inflow over the high grounds and hence 

produce abundant rains over the northern half of the country. In contrast, 

when southerly moisture influxes weaken, the northerly flow becomes 

dominant and pushes the rainfall-belt to progress towards west and 

southward (Figure 3c and 1d). This is clearly seen from the vertically 

integrated moisture fluxes, which was computed from ERA-Interim 

reanalyzed data. ERA-Interim is the European Centre for Medium Range 

Weather Forecasts (ECMWF) latest global atmospheric reanalysis 

(Simmons et al., 2006). It can be seen that a large part of the moisture 

transport comes from the north, and this flow meets the southerly flow 

make the convergence zone (see Figure 3b-1d). Viste and Sorteberg 

(2012) also found that the amount of moisture brought into the Ethiopian 

highlands from the north is 46% higher than from the south.  
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In subsequent months, wet and dry seasons prevail over portions of eastern, 

northern and southern regions while southwestern Ethiopia continues getting 

rainfall for an extended period (Kassahun, 1987). While Kiremt is the main 

rainy season in many regions, Bega (October-January) and Belg rains 

contribute one-third and two-thirds of the annual rainfall for the southern and 

southeastern Ethiopia, respectively (Figure 4a, 4b and 4c). For the Bega and 

Belg seasons, the seasonal rains show strong variability and are less reliable 

both from a temporal and spatial viewpoint, especially over the northern half 

of Ethiopia.  
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Figure 3. Spatial interpolation of station-based total rainfall climatology 

(mm) from 1971-2000. (a) annual, (b) Kiremt (JJAS), (c) Bega (ONDJ) and 

(d) Belg (FMAM). Seasonal climatological values of vertically integrated 

ERA interim moisture transports in kg/ms (1989-2009) are depicted on the 

right panel for each season. The light colors represent the lowest values of 
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both elements. The months are represented as JJAS for Jun-Sep; ONDJ 

for Oct-Jan and FMAM for Feb-May). 

 

This is because major rain-bearing systems are associated with the passage 

of mid-latitude frontal systems and their interaction with the moist tropical air 

masses (Figure 3c and 3d). On the other hand, the southern half of the 

country receives relatively high rainfall totals due to its proximity to the 

movement of ITCZ during Bega and Belg, respectively (Figure 3c and 3d).  
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Figure 4. Percentage of mean annual rainfall (%) for (a) Kiremt (JJAS), b) 

Bega (ONDJ) and (c) Belg (FMAM) seasons for the period 1971-2000. 
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All-Ethiopia rainfall climatology, based on the 250 stations (Figure 1), 

indicates that Ethiopia on average receives 1115 mm of rainfall annually. 

From this crude mean value, which is biased toward regions with a dense 

station network; 655, 310 and 150 mm rainfall totals are the climatological 

values for Kiremt, Belg and Bega seasons, respectively. It follows that 

each of this season contributes 59%, 28% and 13%, respectively to the 

mean annual rainfall totals. On the monthly basis, the national rainfall 

average appears to have a mono-modal type rainy season, with peak in 

July and August (not shown). However, such representation camouflages 

regional rainfall patterns as there are at least two rainy seasons in 

Ethiopia, disconnected by dry periods in December-February, May-June 

and June-August. 

 

3.2. All-Ethiopia rainfall variability 

 

All-Ethiopia rainfall indices were computed based on the available rainfall 

data for the period 1951-2009. On an annual time scale, the aggregated 

rainfall time series showed a relatively stable pattern with tendencies toward 

a somewhat wetter period in the 1950s and 1960s. From 1980 onwards, 

however, the national rainfall index became highly variable (Figure 5a and b.) 

with the three driest years being 1984, 2002 and 2009. Large scale 

atmospheric circulation anomalies related to sea-surface temperature 

anomalies such as El Niño or La Niña events combined with regional and 

local atmospheric circulation anomalies induced significant anomalies in 

Ethiopian rainfall. It has been observed that El Niño and La Niña usually 

suppress and enhance Kiremt rains while they behave differently in the case 

of Bega and Belg seasons (e.g., Korecha and Barnston, 2007). In a similar 

manner, we also examined the occurrence of extreme rainfall anomalies 

during each seasons, separately (see Figure 5c, 5d and 5e).  
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Figure 5. Standardized anomalies of the all Ethiopia rainfall for (a) and (b) 

Annual (with and without stations contained complete data set (18 and 18-

162 stations, respectively)), (c)Bega (Oct-Jan), (d)Belg (Feb-May) and  

(e)Kiremt (Jun-Sep) (using all available stations). Figure 5b was included in 

order to show annual rainfall anomalies created only by considering all 

stations. 

 

Continuous wet anomalies of 1950s and 1960s, and then weakening of rains, 

particularly during the major rainy seasons subsequently were coincided with 

the Sahel rainfall trend (Giannini et al., 2003). The correlation coefficient 

computed between all-Ethiopia Kiremt rains and rainfall indices of the Sahel 

(Giannini et al., 2003) and all-India were 0.83 and 0.60, respectively, 

indicating that these regions are widely influenced by similar large scale 

atmospheric circulation systems, such as ITCZ and Pacific SST anomalies. 

Flohn (1987) also showed the extension of positive spatial correlation within 

the Sahel-Sudan belt towards the western Ethiopia. On the other hand, 

Camberlin (1996) and Agnew and Chappell (1999) documented that for the 

long-range forecasting of the quality of the big rains in Ethiopia, the 
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connection with the India precipitation provides an interesting field of 

investigation. Based on the present study, we can therefore, argue that 

scientific findings on the Sahel and India rainfall, which are well documented 

and more comprehensive than that of the Ethiopian rainy seasons, can be 

beneficial for the understanding of all-Ethiopia rainfall variability. 

 

Based on the standardized rainfall anomalies, Tables 1a and 1b show the ten 

wettest and driest years from 1951-2009 for the annual and three seasons. It 

was found (Table 1a) that among the driest years annually six of them 

coincided with moderate to severe El Niño, and two years were associated 

with La Niña and non-episodic events, respectively. In contrast, seven out of 

the ten wettest years had an association with non-episodes. In a similar 

manner, we also examined the occurrence of wet and dry anomalies during 

Bega, Belg and Kiremt seasons, separately (see Figure 5). In both Bega and 

Belg seasons, out of the first ten driest incidences, six occasions occurred 

during La Niña years. Whereas, the wettest Bega and Belg seasons occurred 

four times out of ten occasions during El Niño years (Table 1). In the case of 

Kiremt season, however, eight and six of the driest and wettest years (Table 

1) coincided with El Niño and La Niña episodes, respectively. 
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Table 1. Extreme annual and seasonal rainfall anomalies in Ethiopia. (a) 

shows the 10 driest and (b) the wettest years annually and for all seasons in 

Ethiopia during the period 1951-2009. Anomalies are normalized by their 

standard deviation. †  indicate El Niño episodes and ª La Niña episodes. 

a) 

Annual Belg Kiremt Bega 

Yr Anom. Yr Anom. Yr Anom. Yr Anom. 

1984 -2.75 2009 -2.44 1987
†
 -2.38 1974ª -1.21 

2002
†
 -2.63 1965 -2.01 2002

†
 -1.43 2007ª -1.15 

2009
†
 -2.52 1999ª -1.91 1982

†
 -1.37 1985 -0.97 

1991
†
 -1.55 2008ª -1.71 2009

†
 -1.33 1952 -0.96 

1965
†
 -1.07 2000ª -1.48 1997

†
 -1.29 1994

†
 -0.92 

1995ª -1.01 2002
†
 -1.48 1984 -1.24 1986

†
 -0.84 

1999ª -0.88 1955ª -1.39 1972
†
 -1.01 1984ª -0.82 

2004
†
 -0.86 1973ª -1.25 1991

†
 -0.79 1990 -0.82 

1973ª -0.85 1984 -1.20 1995ª -0.63 1975ª -0.81 

1994
†
 -0.81 1954ª -1.17 1965

†
 -0.63 1970ª -0.74 

 

b) 

 

Annual Belg Kiremt Bega 

Yr Anom. Yr Anom. Yr Anom. Yr Anom. 

1977
†
 1.99 1987

†
 2.66 1954 3.33 1997

†
 3.42 

1996 1.97 1996ª 1.70 1988 2.50 1977
†
 1.71 

1967 1.49 1957
†
 1.69 1955 2.40 1982

†
 1.35 

1993
†
 1.39 1993 1.32 1975 1.91 1992 1.19 

2006
†
 1.36 1969

†
 1.23 1964 1.87 1978 1.19 
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1954ª 1.25 1981 1.11 1952 1.76 1967ª 1.10 

1998ª 1.11 1968ª 0.96 2007 1.72 2006
†
 0.90 

1988ª 1.10 1990 0.81 1958 1.67 2000ª 0.84 

1961 1.07 1983
†
 0.68 2006

†
 1.40 2008 0.83 

1964 ª 0.98 1963 0.60 1967 1.09 1961 0.82 

 

 

3.3. Seasonal rainfall variability using principal components 

 

In order to investigate the seasonal variability in rainfall, PCA (see 

subsection 1) was applied on the monthly rainfall data for the 1971-2000 

periods. Moreover, the stability of classification is examined by applying 

PCA on station rainfall of 1961-1990 periods. The statistical results 

generated from 1961-1990 and 1971-2000 showed that the differences 

between the two base periods were not significant. Results of both 

unrotated and rotated PCA (using varimax and Oblimin techniques) were 

performed to identify large-scale modes of rainfall variations.  

 

The first three PCs of rotated varimax, which were generated from 162 

stations rainfall data, explained about 67% of the total rainfall variance. 

Each of these components depicts unique seasonal rainfall variations for 

northern half, southwestern, western and southern Ethiopia. The first PC 

(Figure 6a) accounts for 28% of total variance in the varimax-rotated 

PCAs depicting strong seasonal rainfall variability in central, northeast, 

north and northeast lowlands, with the highest loadings confined to the 

northeast escarpments. Regions of strong PC1 loading receive maximum 

rains in June-September (see Figure 3b), and small rains during March-
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April-May (Figure 3d), while the region often receives fewer rain showers 

in December-January (Figure 3c). Unlike the western parts of the country, 

where the rain starts about March and continues through October, the 

seasonal rain in the northeastern Ethiopia starts in July and withdraws 

early September from these regions. Varimax-rotated PC2 and PC3 (26% 

and 13%) loadings show distinct seasonality of rainfall patterns for 

southwest-west and south-southeast regions, respectively (see Figure 6b 

and 6c). The two PC loadings clearly emphasize the non-Kiremt-rain 

benefiting region of south-southeast in contrast to the Kiremt-rain 

benefiting regions of the western and northern half of the country. Similar 

regional rainfall features were also identified from the PCA run ( the first 

three PCs have explained 77% and 80% of the total rainfall variance for 

merged station-satellite rainfall at 162 and 717 stations, respectively) on 

merged station-satellite rainfall data (not shown here).  

 

On the larger geographical scales, the PCA results capture the mean 

seasonality in rainfall for the different regions of the country. However, 

there is a need for a further level of detail in order to capture the 

interannual and seasonal rainfall variability for different regions of Ethiopia 

as it will be addressed in the following section. 
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Figure 6. Spatial patterns of Ethiopian seasonal rainfall variations 

(computed on 162 meteorological stations) based on varimax-rotated 

principal component analysis for the period 1971-2000. Maps (a), (b) and 

(c) represent the first, second and third principal components, respectively. 
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3.4. Rainfall clusters produced from 162 rainfall stations using 

Cluster Analysis 

 

The spatial and temporal rainfall variability over Ethiopia were addressed 

by applying Ward‘s hierarchical and K-means cluster analysis techniques 

(for detail, see subsection 1). The K-means method created twelve rainfall 

clusters, which were further delineated into fourteen regions, and the 

stations that are grouped in each cluster were highly associated 

geographically and exhibited the same seasonal rainfall characteristics 

(Figure 7a). In contrast, each cluster has slightly shifted seasons or 

amplified their amplitudes. Generally, the presence of numbers of rainfall 

clusters suggests that rainfall pattern over Ethiopia vary with short 

distance, while modulated by topographic variation and orientation, large-

scale atmospheric circulation systems, moisture track and local dynamical 

conditions. 

 

3.5. Evaluation of the Classifications Using Merged Station-Satellite 

Data  

 

We have used 162 stations for delineating Ethiopia into 14 homogenous 

rainfall regimes (not shown). As some parts of the country have sparse rain 

gauge density, the creation of stable and coherent rainfall zones would be 

challenging. Thus, there is a need to evaluate the validity of the rainfall 

regimes, particularly over data-sparse parts of the country. This was 

accomplished using a new data set, which combines satellite rainfall 

estimates with rain-gauge data from over 600 stations. This data set goes 

back to 30 years at the grid resolution of 10km (Dinku et al., 2011). 

Evaluation of the homogeneous rainfall regions was done by comparing the 
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classification based on 162 stations and climatological characteristics of 

rainfall regimes in Ethiopia with classification based on the new data set.  The 

use of the new data set is expected to improve stability and coherency of 

rainfall homogeneity, particularly over gauge-sparse regions of the country. 

Comparison was done using three data sets: 

 

a)  Station rainfall data from the 162 stations for the period 1971-2000; 

b) Merged station-satellite rainfall data extracted at the 162 station 

locations for the period 1983-2010, and 

c) Merged station-satellite rainfall data extracted at 717 random locations 

across the country for the period 1983-2010. 

 

The comparison of (a) and (b) is to see if the classification based on the 

merged rainfall data corresponds to the station data. The two classifications 

are similar, although the clusters with the merged data look more coherent 

(Figure 7 (a)).  Likewise, comparison of (a) and (b) is to see if adding more 

―stations‖ would make any differences on rainfall homogenization. There are 

some significant differences between the two classifications (Figure 7 (a) and 

(b)). The main differences are over the regions with sparse of station network. 

On the other hand, the new classification also confirms some of the sub-

divisions we made in the first classification based on knowledge of local 

climate and topography. A good example would be the eastern and southern 

highlands. 

 

The first fourteen homogeneous rainfall regions were delineated by 

consolidating multivariate rainfall statistics using data from the 162 stations, 

topography, climate and seasonal synoptic systems.  However, the 
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classifications made using the 717 random points clearly demarcated some of 

the masked rainfall heterogeneity over the southeastern lowlands and the 

adjoining rangelands (Figure 7 (b)). The use of substantial number of points 

enabled us to merge the northeastern escarpments and the northern 

highlands into one homogeneous rainfall regime. The merging of two regions 

is in fact justifiable. One of the reasons would be the occurrence of rains over 

these regions as a result of southward penetration of troughs from westerly 

frontal systems during Bega and Belg seasons. Furthermore, this part of the 

country is widely known for its exposure to frequent droughts. Similarly, 

merging the southwestern lowlands and the southwestern tropical rainforest 

under the southwestern tropical rainforest rainfall region makes sense. The 

southeastern rangeland, which extends into the border area of southeast 

lowland, is also a result of using the new data set. Southeastern rangeland is 

a transition region between Belg-benefiting areas of south-southeast Ethiopia 

and southern and eastern highlands (Figure 8). The wide coverage of the 

new data set, including border regions (e.g., southeast, west and north 

Ethiopia) adds new information to the classifications (not shown). Thus, by 

incorporating valuable inputs both from the merged station-satellite rainfall 

data, we generate Figure 8, which represents twelve homogeneous rainfall 

regions in Ethiopia.  

 

Figure 8, which shows homogeneous rainfall of Ethiopia has many 

advantages. Firstly, it is constructed based on high quality rainfall data, both 

at point stations and merged station- satellite rainfall estimates at finer spatial 

resolution. Secondly, all parts of Ethiopia are fairly represented. Thirdly, the 

merged data set represents the more recent inter-annual variability of rains 

than the station-based data.  The merging of pocket places such as southern 

exit of Rift Valley, areas bordering with Djibouti and southern highlands with 

the neighboring regions is made based on the knowledge of local topography 

and climate. Figure 8 therefore, contains twelve homogeneous rainfall regions 
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in Ethiopia. The justification for these twelve rainfall regimes will be given in 

the next section. The corresponding regionally-aggregated mean monthly 

rainfall totals (for regions shown in Figure 8) are shown in Figure 9.       

 

 

Figure 7. Geographical distributions of (a) 162 meteorological stations 

where the 1971-2000 monthly rainfall and merged station-satellite data 

extracted at the (1983-2010) and (b) merged station-satellite data extracted 

at 717 random locations (1983-2010) were classified using the K-means 

cluster method. Similar numbers indicate that stations belong to the same 

cluster.  
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Figure 8. Homogeneous rainfall regions in Ethiopia based on outputs from 

stations, merged station-satellite rainfall data and knowledge of local 

climate and topography. In the classifying rainfall patterns into 

homogeneous regions, more information was used from station-satellite 

merged rainfall data. Roman number was used to represent each 

homogeneous rainfall region on the map of Ethiopia. 

 

3.6. Justification for rainfall regions  

 

PCA extracted three large rainfall regimes over Ethiopia, namely; the 

northeastern, southern and western region and the CA further classified the 

Ethiopian rainfall features into twelve clusters. PCA method allowed reduction 
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of the number of variables. By employing the method of Baeriswyl and 

Rebetez (1997), application of CA method (ascending hierarchical 

classification) on the 6 PCs divides Ethiopia into twelve rainfall regimes, 

which are characterized by a particular rainfall region. 

 

Each rainfall cluster represents stations that have fairly coherent features in 

terms of seasonal cycle and amplitude. Combining the PCA and CA analysis 

suggest it is possible to identify distinct regions that have mono-modal or bi-

modal type rainy season(s). When common climatological patterns and 

physical geographical features are superimposed on clusters, twelve distinct 

homogeneous rainfall regions emerge (Figure 8). We will discuss on the 

rainfall characteristics of each rainfall region (see Figure 8) in the subsequent 

subsections. 
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Figure 9. Regional-averaged monthly rainfall climatology (mm/month) for 

the homogeneous rainfall regions of Ethiopia (see Figure 8) over the period 

1983-2010. Area average for each region was computed based on monthly 

mean of all merged station-satellite rainfall data extracted at random 

locations of the homogeneous rainfall region. Monthly rainfall climatology 

computed either from meteorological stations or station-satellite merged 

rainfall data are reasonably similar.   

 

3.6.1. Northeastern Rift Valley and Northeastern escarpments  

 

Northeastern Escarpments and the adjoining lowlands of Northeastern Rift 

Valley are clustered into two clusters (Region I and II, see Figure 8). Most 

of the Kiremt and Belg rainfall amounts and distributions over these 
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regions are produced under the influence of tropical or mid latitude frontal 

systems. The Red Sea Convergence Zone (RSCZ) is often associated to 

the formation of spring and autumn (partially Bega) rains over these parts 

of Ethiopia (Habtemichael and Pedgley, 1966; Tucker and Pedgley, 1977). 

Moreover, Tucker and Pedgley (1977) suggested the presence of the Afar 

Convergence Zone (ACZ) between the northwesterlies over the southern 

Red Sea and southwesterlies over the Gulf of Aden eventually produces 

convection rain over both sides of ACZ.  

 

The Northeastern Rift Valley (Region I) region is generally categorized as 

semi-arid. It receives the major and small rains during the Kiremt and Belg 

seasons with rainfall maxima occurring in July/August and in March/April 

(Figure 9a). This region is one of the driest regions in Ethiopia (less than 

250mm/year as shown in Figure 3a). Region II, the Northeastern 

Escarpments, also has the big and small rainy seasons during Kiremt and 

Belg season, respectively. But it is different from Region I both in amount 

and length of rainy seasons. In the Gissila et al. (2004) and Diro et al. 

(2011) regionalization, the two regions were represented as one cluster. 

However, previous studies made by Kassahun (1986), Camberlin and 

Philippon (2002) and Segele et al. (2009) documented that there is a 

substantial difference in rainfall amounts and rainy season over these 

parts of Ethiopia. According to our analysis, Region II receives over two-

fold of monthly rainfall totals (250mm in July and August, Figure 9b) 

compared to Region I (over 100 mm in August, Figure 9a). Annual rainfall 

amounts and seasonal rainfall patterns for Region II are far more stable 

and higher as compared to Region I (Figure 3). Indeed, the seasonal 

rainfall cycle of Region II resembles partly the neighboring northwestern 

Ethiopia during the period when the ITCZ and the associated summer 

rain-producing systems reach their northern limit (Kassahun, 1987; Segele 

et al., 2009). The major-rain-producing systems over the region include, 
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northward advancement of ITCZ and the associated monsoon flow, and 

southern penetration of mid latitude troughs. The contributions from Bega 

and Belg rainfalls are low over the northern tip of Region II and are 

predominantly influenced by ridge extension from dry Arabian 

anticyclones (Figures 3 and 4). However, both regions are commonly 

prone to frequent droughts and often to flash floods. For example, long-

lasting unevenly distributed rainfall that occurred during Kiremt and Belg 

seasons caused droughts and famines in 1970s, 1980s and 2000s over 

Region II (not shown here). During Kiremt season, when the rain-

producing systems approach the regions from western direction, the 

systems are forced to precipitate along the windward side of northwestern 

mountain chains and the passages of moist air toward the northeastern 

Ethiopia becomes very scanty. 

 

3.6.2. Northwestern Highlands 

 

Northwestern Highlands (Region III in Figure 8) extends from northern 

mountain chains to the northern tip of the country. It mainly receives rain 

during Kiremt season (Figures 3 and 4). This region differs from Region II 

as its rainfall is characterized by a mono-modal type of seasonal cycle. 

Kiremt rain starts in June and reaches its peak in July and August then 

withdraws in late September (Figure 9c). Numerous observational studies 

(e.g., Segele and Lamb, 2005; Romilly and Gebremichael, 2011) indicated 

that this region experiences extensive Kiremt rains while in Bega and Belg 

it generally remains dry. In the middle and end of Kiremt season, large-

scale storms that develop over the Yemeni and northern Ethiopian 

highlands transverse westward and produce intensive and widespread 

rains over the region (see Figure 3). Seasonal rainfall averages exceeds 

1000 mm in the highlands but getting low over the lowlands with 
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significant interannual variability dominates throughout (Figure 3 and 4). 

The major-rain-producing systems over the region are mainly associated 

with northward advancement of ITCZ. The contributions from Bega and 

Belg rainfalls are low and are predominantly influenced by ridge extension 

from the northern hemisphere high pressure systems. Unlike northeastern 

Ethiopia, this region is characterized by low rainfall variability, with a long 

dry period prevails from November to March (Figure 9c). 

 

3.6.3. Southwestern Tropical Rainforest  

 

In the eastern and southern sectors of the southwestern Ethiopia (Region 

IV, Figure 8), rain falls throughout the year. Maximum rains occur from the 

middle of March to October without a significant break (Figure 9d). Mean 

annual rainfall amounts of stations in the region vary between750mm and 

2400 mm (Figure 3a) and on average this region receives 1575 mm. Intra-

annual and seasonal rainfall variability are the lowest across the region, 

except over the western lowlands. Thus, the region is known as the 

wettest corridor of the country. The presence of tropical rainforests and 

the proximity of this region to the equatorial moist region initiate 

convective rainfall over the region. Since the 1980s seasonal and annual 

rainfalls of the region have decreased as compared to the 1950s and 

1960s. The causes for recent declining of rainfall are still unclear. The 

identification of this region (Figures 3 and 4) is in line with the studies of  

Gissila et al. (2004) and Diro et al. (2008)  while Riddle and Cook (2008) 

regrouped the  southwestern Ethiopia slightly into the northwestern 

regions  and partly into the southwestern regions. 

  

3.6.4. Southwestern Rift Valley Lowlands 
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The southern outlet of Rift Valley and the peripheral southwest marginal 

lowlands (Region V, Figure 8) experiences a bimodal rainy season (Figure 

9e). This region is located under the passage of moist southerly flow and 

ITCZ throughout the year. As a result, the rain occurs throughout the year 

(Kassahun, 1986). However, it sometimes experiences prolonged dry 

spells whenever the rain producing tropical systems shift 

northward/southward from the region, particularly in July-August and 

December-January. Regional rainfall features are generally characterized 

by rainfall peaks in April and September/October, which support double 

growing seasons (NMSA 1996). In this region, maximum rainfall occurs in 

the Belg season (500-800 mm) while the second maximum occurs in 

Bega (300-500mm). Unlike the southern and southeastern Ethiopia, a 

substantial amount of rain also falls in Kiremt.  

 

3.6.5. Western Sector of Southern highlands 

 

This region represents the central Rift Valley (Region VI, Figure 8) and the 

adjoining high-grounds extending to the foothills of central and southern 

highlands. It includes the wetter sides of central Rift Valley escarpments, 

which receive the mean annual rainfall between 1000-1750mm (Figure 

3a). The regional rainfall patterns are characterized by continuous rains 

for two consecutive seasons (Belg and Kiremt), with a short spells in June 

(Figure 9f). Belg and Kiremt seasons are more or less equally important 

for this region in contrast to Region V, where Belg and Bega are the main 

rainy seasons (Figure 9e). Moisture fluxes into the region are mainly from 

the east except in the Kiremt season (Figure 3). Even so, seasonal rainfall 

in this region is also influenced by tropical as well as mid-latitude systems 

(Shanko and Camberlin 1998). In contrast to the southern lowlands and 

highlands, the transition from Belg to Kiremt rainfall is short. 
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3.6.6. Central Highlands 

 

The central Ethiopian highland encompasses the areas extending from the 

central Rift Valley to the Blue Nile valleys (Region VII, Figure 8). Rainfall 

amounts are usually amplified when the rainy season progresses from June 

to July. Kiremt is the major rainy season in this region with a maximum in 

July–August (Figure 9g). This region experiences dry climate between 

November and February. The northward progressions of the southwest 

monsoon systems create favorable conditions for stable rainy season over 

this region. Unlike the adjoining Rift Valley and northern regions, where the 

rain is scanty, this always benefits from the northward advancement and 

southward retreat of ITCZ (Segele and Lamb, 2005). Besides, the region 

varies from the nearby high grounds, the semi-arid central Rift Valley region 

because it receives rainfall mainly from westward and northward swinging of 

southwest monsoon storms. Conway (2000), for instance argued that rainfall 

over the Ethiopian Rift Valley shows little association with rainfall over the 

Central highlands. The dissimilarities between rainfall patterns of these 

regions are therefore agreed with our findings. Previous studies made by 

Gissila et al. (2004) and Diro et al. (2008) also demarcated central Ethiopia 

as a separate homogeneous rainfall regime.   

 

3.6.7. Eastern Escarpments of Rift Valley 

 

The eastern Rift Valley escarpment and the adjoining eastern highlands 

(Region VIII, Figure 8) experience a similar rainfall cycle. This region 

represents some of central Rift Valley and the northern fringe of the 

eastern mountains as well as eastern highlands. The region experiences a 

bimodal rainfall cycle (Figure 9h), with relatively shorter and weaker rainy 
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seasons than the northeastern and central highlands. Moreover, the mean 

monthly rainfall amount is lower in eastern regions than the neighboring 

central highlands, with rainfall maxima in April and August.  This region is 

known for its vulnerability to extreme rainfall conditions. For instance, the 

incidence of prolonged 2002 drought (Funk et al., 2005) and 2006 floods 

could partly be explained as a regional phenomenon. This region is 

confined and surrounded by lowlands whereby locally induced weather 

disturbances sometime produce intensive rains and dissipate quickly as a 

result of limited inflow of moisture. Seasonal variation in moisture 

transport (Figure 3) toward the region play major role both for the short 

and long range rainy season (Kassahun, 1987; Jury, 2011). Over this 

region, rain starts in March and gradually increases in April and May. 

There is a dry break in June before the major rainy season starts.  

 

The slow southward retreating of rain-bearing systems such as the ITCZ 

produces rains in September for the region, which differentiate it from the 

nearby northeastern escarpment. Intra-annual and seasonal rainfall 

variability is comparatively high compared to Region VII. Rainfall over this 

region is mainly associated with easterly waves (easterly perturbations) 

originating in the Arabian Sea and northern Somalia as well as the 

intensity of southwest monsoon flow (see Figure 3).  

 

3.6.8. Eastern Highlands and Southeastern Rangelands 

 

Southern Highlands (Region IX, Figure 8) represents the Bale Mountains 

and the adjoining Arsi and Bale highlands, extending into the buffer zones 

between southeastern rangelands and eastern high-grounds. Rainfall of 

this region is characterized by a bimodal cycle, with Belg as the peak rainy 
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season (Figure 9i), which contributes 30-55% for annual rainfall totals 

(Figure 4c). Kiremt season also accounts for a substantial percentage for 

the regional rainfall totals (Figure 4a). Like the south and southeast 

Ethiopia, Bega weather systems (50-300 mm) produce light to moderate 

rains over the region (Figure 3c). The annual spatial rainfall patterns of the 

western sector of Region IX are less variable than the nearby regions, but 

Umer et al. (2007) indicated that rainfall is highly seasonal on the northern 

slopes of the mountains, with the maximum rainfall occurring between July 

and September, while mean annual rainfall on the southern slopes of 

southern highlands is more evenly distributed throughout the year. 

Southeastern rangelands represent the transition rangelands lying 

between southeastern lowlands and eastern highlands (Region X, Figure 

8). This region is mainly influenced by southward retreat of Kiremt 

systems, and easterly perturbation that induce moisture and rain-bearing 

clouds from the coast of East Africa. Bi-modal types rains occurring during 

Belg and Bega seasons. Both rainy seasons are very short and mostly 

prevail around April-May and October-November (Figure 9j).  

 

3.6.9. Southern and Southeastern Lowlands 

 

Southeastern and Southern Lowlands (Regions XI and XII, Figure 8) cover 

extensive portions of agro-pastoral rangelands and lowlands of 

southeastern and southern Ethiopia. These regions extend from the 

eastern margin of the southern Rift Valley to the eastern Ethiopia lowlands. 

The regions experience bimodal seasonal rainfall cycle (Figure 9k and 10l), 

which exhibit similar rainfall characteristics with other eastern African sub-

region. Belg and Bega seasons account for 60% and 30% of the annual 

rainfall totals (Figure 4b and 4c). While these regions experience mostly 

dry weather conditions during the Kiremt season as the strong southerly 
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moisture influx diverged over the lowlands without giving rain (Figure 3). 

Previous studies also confirmed the uniqueness of these regions (e.g., 

Korecha and Barnston, 2007; Diro et al., 2008). The Turkana Lake and 

adjoining regions might be influenced by the Turkana Jet (e.g., Kinuthia 

and Asnani, 1982; Indeje et al., 2001). Vizy and Cook (2003) indicated that 

when the southwest monsoon trough weakens, northern Ethiopia dries, in 

association with a weaker Somali jet, but rainfall is enhanced over southern 

Ethiopia. The reason for splitting the southern and southeastern Ethiopia 

into two rainfall regions is based on the observations and the output from 

cluster analysis (Figure 7b), which show that the southern lowlands receive 

more rain than the eastern lowlands. Both rainy seasons (Bega and Belg) 

also usually start one month earlier over the southern lowlands (Figure 9k 

and 9l). In addition, advection of clouds from equatorial east Africa produce 

rain over Region XII. In contrast, southeastern lowlands (Region XI) 

receive intensive rains, mainly from the formation of tropical depressions 

along the coastal region of the Horn of Africa. The results of cross 

correlation analysis among the stations also indicated that the two regions 

should be separated. 

 

3.7. Climatological implications and comparisons with previous 

findings 

 

Previous studies have highlighted the need to improve further rainfall 

classification scheme that represents seasonality and variability at local scale. 

Our research finding is also broadly consistent with these previous findings, 

with additional availability of numbers of stations classification techniques we 

determine further categorization of homogeneous rainfall regimes. We argue 

that inclusion of all quality-controlled meteorological variables might allow us 

a further sub-classification to be reached in the long run. The aim of this study 
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is, therefore, to characterize the spatial and temporal properties of rainfall 

patterns over Ethiopia and construct annual and seasonal rainfall climatology 

that are spatially coherent but independent homogeneous rainfall regions. 

Temporal rainfall patterns are examined to know how sub-continental rainfall 

anomalies such as the Sahel and all-India, correlate with all-Ethiopia rainfall 

index with time. On the other hand, to delineate the country into spatial 

coherent rainfall regions, multivariate statistical techniques namely; Principal 

Component and Cluster Analyses are applied. 

 

 Mean annual and seasonal rainfall totals show regions normally receive low 

and high rainfalls. Moisture fluxes that show different patterns during each 

season also explain the presence of distinct seasonal variation over Ethiopia. 

This study concludes that all-Ethiopia rainfall time series is strongly correlated 

with both Sahel and all-India summer rains. In this study, Ethiopian rainfall 

patterns are classified into twelve homogeneous rainfall regions by PCA and 

CA techniques, while also aided by local climatological knowledge. This study 

contributes to a better understanding of interannual and seasonal rainfall 

variations, which are the result of local, regional and local scale 

meteorological phenomena. The newly constructed spatially-coherent rainfall 

classification is made to elucidate internal physical differences on Ethiopian 

rainfall with the vast region that normally has mono-modal or bi-modal type 

rain. 

 

Unlike the preceding regional rainfall classification made for Ethiopia using a 

few numbers of stations covering only small portions of the country (e.g., 

Gissila et al., 2004 used 19 and Diro et al., 2008 and 2011 used 33 and 45 

stations); this study uses a larger number of rainfall stations (162 

conventional stations and 717 satellite-rainfall-estimate merged gridded 
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rainfall data) covering major geographical and climatic variations. Moreover, 

while previous studies were based on simple statistical techniques such as, 

similarity of annual cycles and interannual correlations of seasonal rainfall, we 

applied in the current study a series of multivariate statistical techniques to 

produce spatially-distinct rainfall clusters that could represent independent 

but spatially-coherent rainfall regions for Ethiopia.  

 

The present study adds several homogeneous rainfall regions to those 

proposed by Gissila et al. (2004) and Diro et al. (2008 and 2011). This study 

classifies Ethiopian rainfall patterns into twelve distinct regions while Gissila 

et al. (2004) identified only five. In contrast, Diro et al. (2008 and 2011) 

suggested merely two regions for eastern half of Ethiopia while the present 

study showed that this part of the country could be classified into six 

homogeneous rainfall regimes. Distinct nature of each rainfall region was 

further examined based on monthly rainfall climatology (Figure 8). It 

demonstrates the variation in the onset, length and cessation of each rainy 

season for each rainfall region. Furthermore, regionally-aggregated 

standardized rainfall anomalies of Bega, Belg and Kiremt seasons indicate 

that some past severe droughts like 1984, 1987, and 2002 occurred over 

many regions, while localized drought and flood years were markedly 

observed differently (not shown here). Thus, the results presented in this 

study confirm that much of the large scale meteorological systems known to 

influence the Ethiopian rainfall distribution are fairly used in justifying the 

dissimilarities of twelve homogeneous rainfall regions. Besides, the study 

reveals that local rainfall variations recurrently influencing numerous social 

and economic practices can be more identified on the present homogeneous 

rainfall regime than those based on earlier regional classification. 
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4. Conclusions 

 

Annual and seasonal rainfall climatology of Ethiopia were computed and 

analyzed for 250 meteorological stations. Besides, thirty stations from the 

neighboring countries were used to minimize interpolation errors near the 

Ethiopian border. The inclusion of rainfall data of meteorological stations from 

the bordering countries and a larger substantial number of inland stations 

provides more detail to the climatological rainfall characteristics of the 

country.  All-Ethiopian rainfall time series were made for the period 1951-

2009. It follows that each of the season contributes 59%, 28% and 13% 

(Kiremt, Belg and Bega, respectively) to the mean annual rainfall totals. All-

Ethiopian Kiremt strongly correlates with the Sahel and India summer rainfall, 

with high correlation coefficients of 0.83 and 0.60, respectively. The result 

indicates that these regions are widely influenced by similar large scale 

atmospheric circulation systems. Results from this study therefore, suggest 

that the scientific findings on the Sahel and India rainfall, which are well 

documented and more comprehensively studied than that of the Ethiopian 

rainy seasons, can be beneficial for the understanding of Ethiopia rainfall 

variability. 

 

Analysis of various clusters on the monthly rainfall data from 162 

Ethiopian stations (1971-2000) indicated the presence of distinct spatial 

rainfall patterns over Ethiopia. PCA was broadly categorized Ethiopia in 

three major rainfall regions, namely; northeastern, southwest-

northwestern and south-southeastern. It identified the dominance of large 

rainfall dissimilarities and strong seasonality, which separate Kiremt rain-

benefiting from Belg and Bega rainfall regimes. The application of CA, on 

the other hand identified at least twelve distinct rainfall regions for the 

country. We argue that inclusion of all quality-controlled meteorological 
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variables might allow us a further sub-classification to be reached in the 

long run. 

 

Aided by the cluster analysis and the first author‘s fifteen years of 

experience as a weather and climate forecaster, we delineated the 

country into numbers of homogeneous rainfall regions. Based on the 

merged station-satellite data set as well as by considering the outputs 

from 162 stations, we classified Ethiopia in to twelve homogenous rainfall 

regions. The characteristic of each homogeneous rainfall region is the 

reflection of the typical seasonal cycle that prevails in Ethiopia. Both 

climatic features and local topographies have been taken into account in 

discriminating the country‘s rainfall patterns into homogeneous regions.  

 

 The identification of specific rainfall regions add values in the local 

seasonal climate forecasting, monitoring of climate variability and change 

on regional and national scales. Above all, it invites in-depth investigations 

into the climatic and topographic processes controlling the regional 

climate of each region both on shorter and longer time scales. Moreover, 

the mountainous chains that bisect northwestern from the northeastern 

regions were well replicated in our spatial delineations. However, the 

topographic barrier that creates the rainfall shadow along the eastern side 

of the mountain chain during the Kiremt rainy season may require further 

investigation. The formation of the dry corridors of the northern Rift Valley 

and southeastern lowlands are just two of the interesting regional 

features, where understanding of the meteorological mechanisms may 

provide a benefit to realize the impact of rainfall variation on social and 

economic activities of the region. 
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Distinct nature of each rainfall region was further examined based on monthly 

rainfall climatology. It demonstrates the onset, length and cessation of season 

for each rainfall region. Furthermore, regionally-aggregated standardized 

rainfall anomalies of Bega, Belg and Kiremt seasons indicate that past severe 

droughts like 1984, 1987, and 2002 covered occurred substantial portions of  

Ethiopia, while localized drought and flood incidences were markedly 

observed differently (not shown here). Thus, the results presented in this 

study confirm that much of the large scale meteorological systems known to 

influence the Ethiopian rainfall distribution are fairly used in justifying the 

dissimilarities of twelve homogeneous rainfall regions. Besides, the study 

reveals that local rainfall variations recurrently influencing the country‘s social 

and economic practices can be more identified on the present homogeneous 

rainfall regime than those based on earlier regional classification. We have 

also indicated that inclusion of all quality-controlled meteorological variables, 

particularly the station-satellite blended rainfall currently available at the grid 

resolution of 10km allow us to construct spatial coherent and stable rainfall 

regions in Ethiopia. It is also believed that further detailed spatial analysis of 

rainfall on various time scales, such as seasonal and high spatial resolution 

data is needed to obtain finer information for localized societal activities. 

 

In summary, the spatial distributions of Ethiopian rainfall regimes obtained 

here can be used to analyze past rainfall and also to assess possible 

future rainfall trends in different parts of the country. As the seasonal cycle 

is emphasized in the regionalization, we think the regions are well suited 

for monitoring the impact of rainfall on agricultural productivity, water 

resources and health services, among others. It can also be used as a 

reference to evaluate the performance of global and high resolution 

regional climate models of replicating historical rainfall climatology of each 

homogeneous rainfall region. We also believe that the rainfall regions can 

be used for monitoring and prediction of rainfall on seasonal and annual 
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time scales as well as to develop useful products such as decision support 

tools at various tempo-spatial scales. 
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In much of Ethiopia, similar to the Sahelian countries to its west, rainfall from 

June to September contributes the majority of the annual total, and is crucial 

to Ethiopia‘s water resource and agriculture operations. Drought-related 

disasters could be mitigated by warnings if skillful summer rainfall predictions 

were possible with sufficient lead time. This study examines the predictive 

potential for June–September rainfall in Ethiopia using mainly statistical 

approaches. The skill of a dynamical approach to predicting the El Niño–

Southern Oscillation (ENSO), which impacts Ethiopian rainfall, is assessed. 

The study attempts to identify global and more regional processes affecting 

the large-scale summer climate patterns that govern rainfall anomalies. 

Multivariate statistical techniques are applied to diagnose and predict 

seasonal rainfall patterns using historical monthly mean global sea surface 

temperatures and other physically relevant predictor data. Monthly rainfall 

data come from a newly assembled dense network of stations from the 

National Meteorological Agency of Ethiopia. Results show that Ethiopia‘s 

June–September rainy season is governed primarily by ENSO, and 

secondarily reinforced by more local climate indicators near Africa and the 
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Atlantic and Indian Oceans. Rainfall anomaly patterns can be predicted with 

some skill within a short lead time of the summer season, based on emerging 

ENSO developments. The ENSO predictability barrier in the Northern 

Hemisphere spring poses a major challenge to providing seasonal rainfall 

forecasts two or more months in advance. Prospects for future breakthroughs 

in ENSO prediction are thus critical to future improvements to Ethiopia‘s 

summer rainfall prediction.  

 

 

1 Introduction and background 

 

Ethiopia, located within 3.30°–15°N, 33°–48°E, has three climatological rainy 

seasons: June–September (called Kiremt), October–January (Bega), and 

February–May (Belg; Shanko and Camberlin 1998; Seleshi and Demarée 

1995; Tsegay 1998, 2001; Gissila et al., 2004). Kiremt rains during June–

September (JJAS) account for 50%–80% of annual rainfall totals over the 

regions having high agricultural productivity and major water reservoirs. Thus, 

the most severe droughts are usually related to a failure of the JJAS rainfall to 

meet Ethiopia‘s agricultural and water resources needs. This study is devoted 

to Ethiopia‘s JJAS rainfall climatology, interannual variability, and 

predictability. 

 

 

Tropical rainfall varies from daily, interannual, to interdecadal and longer time 

scales. Following breakthroughs in weather forecasting in the 1950s and 

1960s (see Cane 2000), as environmental monitoring capabilities improved, 

physical modeling of the interannual variability of sea surface temperature 

(SST) over the eastern tropical Pacific Ocean revealed predictability of the El 

Niño–Southern Oscillation (ENSO; Cane et al.1986; Cane and Zebiak 1987; 

Zebiak and Cane 1987). ENSO predictability then led to potential 

predictability of seasonal climate over many tropical and some extratropical 
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regions. Studies have indicated that northern summer rainfall in the Sahel 

responds partly to ENSO fluctuations (Nicholson and Kim 1997; Nicholson 

and Selato 2000; Hastenrath 1995; Rowell 2001, among many others). On 

decadal scales, research has provided evidence and possible explanation for 

Sahelian drought throughout most of the last quarter of the 1900s (e.g.,Hulme 

2001). Techniques used at the Met Office, among other global prediction 

centers, attempt to capture both interannual and interdecadal components of 

SST forcing. Research devoted to the twentieth-century Sahel drought 

focused heavily on the impact of regional and global SST anomalies on 

interdecadal time scales (Folland et al. 1991; Rowell et al. 1995; Ward 1998; 

Giannini et al. 2003; Janicot et al. 1996; Janicot et al. 2001; Zeng 2003; 

Paeth and Friederichs 2004). Some studies have addressed the additional 

influence of land surface forcing (Zeng et al. 1999; Wang et al. 2004).  

 

 

Sahel droughts have also been studied statistically relative to more regional 

oceanic and atmospheric factors. Raicich et al. (2003) demonstrated a 

connection between Indian monsoon and Sahel rainfall regimes and sea level 

pressure in the Mediterranean area, and Rowell (2003) showed the influence 

of Mediterranean SSTs on seasonal Sahel rainfall. Osman and Shamseldin 

(2002) showed that the driest years in central and southern Sudan occur 

during the warm phase of ENSO and Indian Ocean SST, and proposed 

empirical rainfall prediction models. Lamb (1977) suggested an extension of 

Sahel drought toward Ethiopia on the basis of synoptic circulations. In 

addition, Giannini et al. (2003) attributed the Sahel‘s recent drying trend to 

warmer than-average low-latitude waters around Africa, which, by forcing 

deep convection over ocean, decrease monsoon-related continental 

convergence and rainfall from Senegal to Ethiopia. Such studies that include 

Ethiopia could be confirmed using gauge rainfalls from a newly assembled 

dense station network—data that could be included into the Sahel rainfall 

indices. 
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Seasonal rainfall patterns over tropical Africa, like the Indian subcontinent, 

are modulated partly by monsoonal flows (Bhatt 1989; Camberlin 1997). 

Ethiopia‘s rainfall climatology is determined mainly by seasonal changes in 

large-scale circulation, part of which involves the seasonal north–south 

movement of the intertropical convergence zone (ITCZ); this resembles what 

is generally thought to occur in the traditional Sahel region from Sudan to 

Senegal (Nicholson 1989). The complex orography across Ethiopia shapes 

the JJAS rainfall patterns spatially and temporally within the season. Year-to-

year variability of Ethiopia‘s JJAS rainfall patterns has been described in 

terms of onset, cessation, dry spell occurrences, and growing season 

duration (Segele and Lamb 2005). Kiremt rainfall advances gradually 

northward across the western half of the country from March to mid-June, 

progressing more rapidly across the eastern half from mid-June to mid-July. 

(From March to May, this rainfall is actually considered part of the Belg 

rainfall regime.) The mean southwestward retreat of rainfall occurs from early 

September to November. 

 

 

The mountain ranges are oriented southwest–northeast, with the Rift Valley 

bisecting Ethiopia. During JJAS, there are southwest monsoon low-level 

winds over the Arabian Sea, strong cross-equatorial flow along eastern flank 

of Africa, and southeasterly trade winds south of the equator (Gissila et al. 

2004). With these low-level flows, summer storm development is facilitated by 

the upper-level tropical easterly jet (TEJ), serving also as westward-steering 

currents. 

 

 

JJAS rainfall in the region around Ethiopia is controlled by several 

climatological features in the lower and upper troposphere (e.g., Hastenrath 

1991). These include the following: 1) seasonal northward advance of the 
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ITCZ, persisting over Ethiopia; 2) formation of heat lows over the Sahara and 

Arabian landmasses; 3) establishment of subtropical high pressure over the 

Azores, St. Helena, and Mascarene; 4) southerly/southwesterly cross-

equatorial moisture flow from the southern Indian Ocean, central tropical 

Africa, and the equatorial Atlantic; 5) upper-level TEJ flowing over Ethiopia; 

and 6) low-level jet (Somali jet). Synoptic systems arising from these 

seasonal circulations have been discussed [Kassahun 1987; Tadesse 1994; 

(National Meteorological Services Agency) NMSA 1996; Segele and Lamb 

2005]. This study will not focus on these local features, per se.In JJAS, 

convective activity typically develops over the Ethiopian highlands, while 

southern and southeastern Ethiopia receives little rain. Using a multidecadal 

history of rainfall over a dense station network (described below), the spatial 

distribution of mean total JJAS rainfall (Fig. 1, top) shows the greatest rainfall 

over the highlands of western/west-central Ethiopia, the northeast and 

southeast lowlands being relatively dry. Southeastern Ethiopia, closer to East 

Africa, has rainy seasons during March–May and October–November. The 

distribution of mean number of days having measurable (≥0.1 mm) rainfall 

(not shown), follows a similar pattern1, with western and central Ethiopia 

receiving measurable rainfall 70%–90% of the days. Farther to the northeast 

rainfall occurs for only 10–30days, despite JJAS being the main rainy season. 

Southern/southeastern Ethiopia receives rains only for a few days in 

September with the southward retreat of the ITCZ. The bottom of Fig. 1 

shows the percentage contribution of JJAS rainfall to the annual total rainfall. 

Figures 2 and 3 show, respectively, the locations of selected stations, and the 

seasonal march of mean monthly rainfall at four stations with varying 

longitude within the central (8°–10°N) latitude band. This study focuses on the 

central, western, and northern parts of the country that have their main rainy 

season in JJAS (although stations in the southern/southeastern portion of this 

focus area may have a mildly bimodal seasonal distribution). 

1 Note that droughts and floods are sometimes declared even when total rainfall or 
the number of days receiving rain is not very anomalous. This can occur when 
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seasonal rainfall is grossly unevenly distributed over the season, with long dry or 
wet spells that may straddle the monthly boundaries. 
 

 

FIG. 1. (top) Total JJAS rainfall climatology (mm) over Ethiopia, 1971–2000 

(bottom) Percentage of 1971–2000 mean total annual rainfall contributed by 

JJAS rainfall. 
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Ethiopian rainfall in JJAS differs vastly from year to year in timing and total 

amount. The phase of ENSO has been identified as impacting summer 

rainfall (Nicholls 1993; Tsegay 1998, 2001; Gissila et al. 2004; Segele and 

Lamb 2005; Seleshi and Demarée 1995; Bekele 1997), with the same 

direction of impact as that of the Sahel. The large-scale atmospheric 

dynamics relevant to Ethiopia, however, differ in some ways from those 

relevant to regions farther west in the Sahel (Bhatt 1989; Cook 1997). 

Recently, Gissila et al. (2004) developed an empirical forecast model for 

Ethiopian summer rainfall using regression with Indian and Pacific SSTs in 

March, April, and May as potential predictors. Our study aims to quantify the 

statistical relations between ENSO, and other oceanic and atmospheric 

phenomena, and JJAS rainfall, a practical objective being to develop models 

that skillfully anticipate rainfall anomalies prior to rainy season onset, allowing 

for societal mitigation measures. 

 

 

We utilize more stations than were available for the above studies, and apply 

several techniques to quantify rainfall behavior with respect to ENSO and 

other governing large-scale climate patterns, both averaged over all of 

Ethiopia and distributed geographically within the country. We assess 

prospects for implementing statistical techniques for reliable, sustainable 

climate forecasts, including a forecast for the state of the ENSO by a 

dynamical model as a potential rainfall predictor. Our datasets and 

methodologies are described in section 2. ENSO cycles, their implications for 

predictability of JJAS rainy season, and the predictability of ENSO itself 

during JJAS, are presented in section 3. Results of diagnostic and predictive 

rainfall modeling are provided in section 4. Discussion and conclusions are 

given in section 5. 
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FIG. 2. Locations of selected climatological stations. 

 

 

 



186 

 

FIG. 3. Time series of long-term mean monthly rainfall (mm), 1970–2000, for 

selected stations within the central (8°–10°N) latitude band. Maximum rainfall 

occurs in JJAS season, but decreases eastward with bimodal seasonal 

rainfall patterns more likely over eastern sectors. 

 

 

2 Data and methodology 

 

 

The rainfall data used for many analyses in this study, obtained from the 

Ethiopian NMSA, are monthly totals for June–September. Two hundred 

meteorological stations (Fig. 4a) have periods of records varying from 15 to 

>50 yr. Nearly half of the full array of stations has records of 30 yr or more 

since 1961 (Fig. 5). Data from the 1960s are omitted here, due to widespread 

gaps. A total of 78 stations (Fig. 4b) are used for many of our analyses, 

usually covering the period 1970–20042. However, only 55 stations, denoted 

by large circles in Fig. 4b, are used for our all-Ethiopian JJAS rainfall 

analyses, where stations located in the south and southeast lowlands that are 

climatologically dry during JJAS are excluded. From 1970 onward, the 

proportion of missing data is low, with a small number of stations having at 

most 10% missing data (Fig. 6). Missing months were estimated by 

interpolation from the relative anomalies of stations within a threshold 

distance away (typically including 1–4 stations). To assess the maximum 

sensitivity to including these estimated rainfalls, we compared the time series 

of the standardized all-Ethiopian average JJAS rainfalls resulting from the 

―cleaned‖ 55 stations to that using only the 36 stations having full original 

records. The two versions of the all-Ethiopian rainfall data correlate 0.91, and 

the largest absolute differences in standardized rainfalls are near 0.7. This 

could have a visible, although not major, impact on the results. Omitting 35% 

of the stations needing any treatment is thought to represent an upper limit of 

the effect of including stations requiring filling of missing data.  
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We use global SST from the National Oceanic and Atmospheric 

Administration/National Climatic Data Center (NOAA/NCDC) Extended 

Reconstructed Sea Surface Temperature version 2 (ERSSTv2) historical 

dataset (Smith and Reynolds 2004), with 2° x 2° resolution for 1970–2004. 

From these SSTs indices are derived, including the Niño-3.4 ENSO index 

(SSTs averaged over 5°N–5°S, 120°–170°W). The Niño-3.4 index is used to 

represent the ENSO condition because of its demonstrated importance for 

ENSO teleconnections (Trenberth and Hoar 1996; Barnston et al. 1997). 

Retrospective forecasts for Niño-3.4 SST generated by the Lamont-Doherty 

Earth Observatory‘s dynamical ENSO forecast model (current version 

LDEO5; Chen et al. 2004) were kindly run by D. Chen for the period 1970–

2005. 

 

2A few of the analyses use data spanning only through 2000 or 2002, owing to 
practical considerations, and this is always noted when it is the case. 
 

 

In examining diagnostic and predictive aspects of summer Ethiopia rainfall, 

several linear statistical techniques are employed. Standardized anomalies of 

the 4-month total rainfalls are used for each station for many analyses, using 

1971–2000 as the base period. Standardization places data in all locations in 

a similar frame of reference for assessing year-to-year rainfall anomalies. The 

drier stations in the Rift Valley, and eastern or southern Ethiopia, tend to have 

particularly positively skewed JJAS rainfall distributions, and reduced signal-

to-noise ratios due to the few governing non-dry years. Because these 

south/southeast lowland stations are in seasonally dry zones, they are 

omitted from the 55-station subset used for the all-Ethiopian rainfall index 

(Fig. 4b). 

 

 



188 

 

 
 

FIG. 4. (left) Locations of the 200 climatological stations over Ethiopia. (right) 

Same as in (left) but for the 78 stations used in many of the analyses of JJAS 

rainfall in Ethiopia, 55 of which (larger filled circles) are used for the analyses 

of all-Ethiopian rainfall.  

 

 

Simple linear correlation, multiple linear regression, and robust regression 

techniques3 are used to develop predictive models for summer Ethiopian 

rainfall, revealing teleconnections between SST and rainfall. Strategies to 

predict the ENSO-related summer Niño-3.4 SST anomaly are used as one 

approach to forecasting consequent Ethiopian rainfall. 
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FIG. 5. The number of meteorological stations having non-missing rainfall 

data during JJAS as a function of year used for analyses of JJAS rainfall 

anomalies during 1961–2004. 

 

3Robust regression enables assessment of the sensitivity of results to outlier 

cases, if any are present. 

 

 

For prediction of JJAS seasonal rainfall, canonical correlation analysis (CCA) 

is used, as described in previous studies (e.g., Hotelling 1936; Glahn 1968; 

Barnett and Preisendorfer 1987; Barnston and Smith 1996; Thiaw et al. 

1999). CCA is a multivariate regression that relates patterns in predictor fields 

(e.g., SST) to patterns in a predictand field (e.g., rainfall). Cross validation 

(Michaelsen 1987) and retroactive designs are used to minimize inflation of 

the skill estimates. The SST–rainfall relationships are examined both for 
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concurrent data and when SST precedes the summer rainfall, as in actual 

forecasting. 

 

 

3 ENSO and the June–September rainy season over Ethiopia 

 

The impact of the ENSO variability on global climate has been well 

documented (Ropelewski and Halpert 1987; Mason and Goddard 2001; 

Goddard and Dilley 2005, among many others). The ENSO state modulates 

the rainy seasons in some regions, particularly in the Tropics (Hastenrath 

1995). El Niño is associated with drought and forest fires in parts of Australia, 

Indonesia, Southeast Asia, and southern Africa (Goldammer 1999; 

Khandekar et al. 2000; Jury 2002). Chances for flooding are enhanced with El 

Niño during the short rainy season of October–December in East Africa 

(Ogallo 1988, 1989; Indeje et al. 2000; Philippon et al. 2002).  

 

 

During JJAS, suppressed rainfall has been observed to accompany El Niño 

over much of Ethiopia, often with economic catastrophe. Although the 

importance of ENSO to Ethiopian rainfall is being accepted and incorporated 

in the NMSA‘s operational policy4 more now than previously, it continues to 

be somewhat underweighted despite widespread documentation of its 

importance (NMSA 1996; Camberlin 1997; Bekele 1997; Tsegay 1998; 

Gissila et al. 2004; Segele and Lamb 2005). As shown in Fig. 7 (for 1970 

onward), lower tercile all-Ethiopian JJAS seasonal rainfall occurred in 1965, 

1972, 1979, 1982, 1984, 1987, 1990, 1991, 1995, 1997, and 2002. More than 

half of these summers coincided with El Niño events; none occurred during 

La Niña. Upper tercile rainfall conditions occurred in 1961, 1964, 1970, 1973, 

1974, 1975, 1977, 1978, 1981, 1988, 1994, 1996, 1998, 1999, and 2003; 

more than half of these matched La Niña events, while only one (1994) 

occurred with El Niño. Below we will assess this connection more 
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quantitatively, and discuss the potential for issuing useful seasonal rainfall 

predictions before the onset of summer season rains. 

 

 

The effect of ENSO on rainfall is seen in composite analyses for selected 

individual stations by month. JJAS monthly rainfalls are averaged for El Niño, 

La Niña, or near-neutral conditions, using the classification system of the 

NOAA/Climate Prediction Center (CPC)5. Here, all months of any year are 

assigned the ENSO phase existing during JJAS of that year, so that impacts 

of ENSO events occurring during the Belg and Bega seasons are not directly 

represented. Mean monthly rainfalls seem to be enhanced during La Niña 

years in regions where JJAS is the major rainy season, due both to greater 

duration of the rainy season (Segele and Lamb 2005), and increased rainfalls 

during individual months of the rainy season. Examples of stations from 

different parts of Ethiopia having a clear ENSO influence are shown in Fig. 8. 

 

 

Figure 9 illustrates the geographical distribution of the correlation between the 

SST in the Niño-3.4 index region and Ethiopian JJAS rainfall at the 78 

stations, based on 1970–2004, keying SST to individual months prior to 

summer (Figs. 9a–c) and SST during JAS (Fig. 9d). The association of 

summer rainfall with ENSO in early pre-summer months (January–April) is 

weak, and increases as the time of the ENSO state approaches the beginning 

of the rainfall season. Statistically significant (≥0.34) negative correlations are 

found between JJAS rainfall totals and Niño-3.4 SST occurring nearly 

simultaneously (in JAS) mainly in the northern half of the country but also in 

the southern highlands and southwest Ethiopia (Fig. 9d). In the 

climatologically dry southeastern lowlands, associations with ENSO are 

weak. The moderate negative simultaneous correlations (-0.4 to -0.6 at some 

locations) imply that rainfall forecasts would have useful skill levels if the 

summer Niño-3.4 SST could be predicted beforehand. Correlations between 
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JJAS rainfall and Niño-3.4 SSTs of preseason months may be of some use 

only for May, where some correlations are stronger than -0.4. The lack of a 

stronger relationship between the May ENSO state and rainfall is not 

surprising, as the ENSO condition may change in either direction between 

April and June (Tziperman et al. 1998). For example, high Niño-3.4 SST in 

May could be due to an El Niño that had matured earlier and would likely 

dissipate before July, or to a newly emerging El Niño that was absent in 

February and March. Predicting ENSO is known to be difficult during the 

northern spring. Later we will discuss an indicator of summer ENSO based on 

the change of the May SST anomaly from that of a few months earlier. 

 

4
Climate prediction in Ethiopia started in 1987 as an experimental innovation (NMSA 1996) after 

Cane and Zebiak (1987) introduced the first ENSO prediction model. This beginning was a 

result of research undertaken at NMSA in Ethiopia (Degefu 1987; NMSA 1996). The widespread 

Ethiopian famines in 1972/73, 1982/83 and 1984/85, confirmed to be drought related, could 

have been greatly diminished using early warning systems based on probabilistic seasonal 

rainfall predictions. In the early stages of seasonal prediction, regional synoptic patterns were 

emphasized (Kassahun 1987; Tadesse 1994). However, the coinciding of drought years with El 

Niño attracted attention to ENSO as a vital predictor, as anticipating the ENSO state prior to the 

summer could sharpen the rainfall predictions. In the late 1980s and early 1990s, NMSA added 

new tools to its initially synoptically based seasonal rainfall predictions such as analogs and 

ENSO teleconnections, and achieved favorable results in anticipating some drought and flood 

catastrophes. In summer of 1995 the analog tool was augmented to include ENSO, Atlantic and 

Indian Ocean SSTs, and large-scale regional circulation patterns. The two to three best analog 

years were used to suggest the tercile-based seasonal rainfall probabilities as well as the 

character of the intraseasonal variability, both applied to individual Ethiopian regions. 

5
NOAA defines a nonneutral ENSO state as a departure from normal of the SST in the Niño-3.4 

region of magnitude 0.5°C or more, lasting for at least five running three-month periods. 
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FIG. 6. Number of stations having missing monthly data during JJAS (1970–

2004), for the set of 78 stations (upper curve) and the set of 55 stations. 
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FIG. 7. Standardized JJAS rainfall anomalies of all-Ethiopian rainfalls for the 

1970–2004 period. Years having El Niño, La Niña, and neutral conditions 

during JJAS, based on the NOAA/CPC ENSO classification, are denoted by 

the patterns inside the bars. 

 

 

A time series of the all-Ethiopian JJAS rainfall average is derived for 1970–

2004, based on the abovementioned 55 stations (Fig. 4b). The time series of 

the average of the seasonal rainfall totals, are standardized by 1971–2000 

rainfall statistics, is shown in Fig. 10. Overall deficient (abundant) rainfall 

tends to occur during El Niño (La Niña) summers, the four strongest for JJAS 

being 1972, 1982, 1987, and 1997 (1973, 1975, 1988, and 1999). The 

correlation with Niño-3.4 SST over 35 yr (1970–2004) is -0.766.  

 

 

Interestingly, although 1997 marked the strongest El Niño during 1970–2004, 

the JJAS all-Ethiopian rainfall was only the sixth lowest among the 35 yr. This 

is explained partly by the modulating roles of other tropical ocean basins in 

governing Ethiopia‘s JJAS rainfall. In 1997 the Indian Ocean‘s delayed 

warming response to the abnormally warm tropical Pacific (e.g., Goddard et 

al. 2001) appeared earlier than normal during late northern summer/fall, due 

both to the seasonally early onset of Pacific warming (April 1997) and the 

magnitude of that warmth. Thus, in September 1997, with a noticeably 

warmed western Indian Ocean SST, a north-ward meridional extension of the 

ITCZ induced widespread rains over Ethiopia. (During most El Niño northern 

summers, the Pacific, but not yet the Indian Ocean has warmed.) In other 

severe summer droughts, such as the ENSO-neutral 1984, anomalously 

warm SST was present in the eastern equatorial Atlantic, with an attendant 

southward retreat of ITCZ and similar displacement of the monsoon trough 

(Lamb 1978; Ward 1998; Segele and Lamb 2005). 
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Furthermore, the upper-tropospheric TEJ (Camberlin 1997) supports 

Ethiopian rainfall in JJAS (Segele and Lamb 2005). A strong TEJ, which is 

consistent with above-average SSTs in the northwestern tropical Pacific (and 

thus, indirectly, with La Niña conditions), was observed in summer 1996, as 

opposed to a poor TEJ in the dry year of 1984 despite a cool/neutral ENSO 

state. A comparable positive association between TEJ strength/latitude and 

Sahel monsoon rainfall was identified by Hastenrath (2000). TEJ and other 

atmospheric systems may be partly associated with the ENSO state again 

implying the importance of skillfully predicting the JJAS ENSO condition. How 

well can the summer ENSO condition be predicted upon completion of May, 

just in time to anticipate summer rainfall? 

 

6 It is worth noting that when the rainfall index is computed standardizing at the 

station level before doing so again for the 55-station average, this correlation is 

0.77. 
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FIG. 8. Seasonal march of mean monthly rainfall amount (mm) composited 

for years whose JJAS season is classified as El Niño, La Niña, or neutral, for 

four stations located in the northwest, northeast, central, and southeast 

portions of Ethiopia, respectively: Bahir Dar (labeled BDR in Fig. 2; 

northwest), Addis Ababa (AAB; central), Bati (BTI; northeast), and Gode 

(GDE southeast; influence in both MAM and OND seasons), based on 1970–

2004 data. 

 

 

 

FIG. 9. Spatial distribution of correlation between JJAS rainfall for 78 stations 

in Ethiopia and Niño-3.4 SST in (a) January, (b) April, (c) May, and (d) JAS. 

Computed for 1970–2004, values of 0.34 or greater in magnitude are 

statistically significant at the 95% confidence level. 
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FIG. 10. Standardized JJAS rainfall anomalies of (top) all-Ethiopian rainfalls 

and (bottom) those of Niño-3.4 SSTs for 1970–2004. Standardization based 

on 1971–2000 statistics. Correlation between the two is ≥0.76. 

 

The strengths of linear relationship between all-Ethiopian JJAS rainfalls and 

the Niño-3.4 SST index for individual months from January to September, and 

for JJA and JAS SST, are shown in Table 1 for 1970–2004. Correlations are 

near −0.75 during the months of the summer rainy season, stronger than 

correlations presented in Fig. 9d for any individual station, due to the filtering 

effects of spatial aggregation with respect to the random variability present in 

single location rainfalls (Gong et al. 2003). Such noise filtering better isolates 

the ENSO signal. The correlation is moderate (-0.59) for the May Niño-3.4 

SST, suggestive of some predictability based solely on the May ENSO state. 

A categorical version of the JJAS simultaneous relationship between ENSO 
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and rainfall is shown by a contingency table (Table 2). A moderately strong 

degree of categorical association between the ENSO and rainfall category is 

clear, with impacts for both El Niño and La Niña. A chi-square test yields 

>99% statistical significance. 

 

TABLE 1. Correlation, based on 1970–2004, between all-Ethiopian JJAS 

rainfall and Niño-3.4 SST during monthly or three-month periods prior to and 

concurrent with the rainfall. 

 

Jan Feb Mar Apr May Jun Jul JJA Aug JAS Sep 

-0.02 -0.12 -0.20 -0.41 -0.59 -0.74 -0.75 -0.76 -0.75 -0.75 -0.72 

 

 

TABLE 2. Association between the ENSO state and all-Ethiopian JJAS 

rainfall, based on the 1970–2004 period. Table entries are observed 

frequencies, followed in parentheses by their inferred conditional probabilities 

(x100), given the ENSO category. Rainfall categorization is based on the 

three categories having cutoffs at ±0.431 (tercile defining) standardized 

anomalies. ENSO classification is taken from NOAA/CPC. For the 35 yr of 

JJAS (1970–2004), 9 (8) years are classified as El Niño (La Niña), and 18 yr 

as neutral. Significance is assessed using a Chi-square test. 

 

Seasonal Rainfall 

category 

ENSO phase  

 

Significance 

El Niño 

(9 yr) 

Neutral 

(18 yr) 

La Niña 

(8 yr) 

Dry (10 yr) 6 (67%) 4 (22%) 0 (<5%) P  < 0.01 
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Normal (12 yr) 2 (22%) 9 (50%) 1 (12%) 

Wet (13 yr) 1 (11%) 5 (28%) 7 (>85%) 

 

TABLE 3. Autocorrelation (_100) for the Niño-3.4 SST index for 1970–2004. 

Correlations of 0.60 or higher for periods during the JJAS rainy season from 

months prior to JJAS are shown in bold. 

 

 May Jun Jul JJA Aug JAS Sep 

Preseason  

Jan 55 25 7 8 -2 0 0 

Feb 68 31 10 15 5 7 6 

Mar 70 48 25 27 17 20 19 

Apr 86 64 49 53 44 47 45 

May 100 81 63 70 59 62 61 

In season  

Jun 100 89 94 84 87 82 

Jul 100 98 96 97 90 

 

If the ENSO state for JJAS could be predicted well in advance, much could 

be said about the general character of Ethiopia‘s main rainy season. Since 

Zebiak and Cane (1987) first established a successful simplified but fully 

physical coupled ocean–atmosphere model for forecasting ENSO, copious 

research has been conducted to improve understanding of ENSO and to 

predict it at several seasons lead (Latif et al. 1998). ENSO forecasts whose 

lead time traverses the April–June period are known to have lower skill than 

forecasts whose lead time does not include that period. The seasonal 

variation of the persistence of tropical Pacific SST anomalies roughly parallels 
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that of the skill (Wright et al. 1988)—autocorrelation of tropical Pacific SST 

anomalies at 2–4 months is lowest in boreal spring and highest in fall (Latif et 

al. 1998). Lag correlations between northern summer tropical Pacific SST 

from the preceding months represent a lower limit of ENSOrelated 

predictability, and we expect autocorrelations of the ENSO state prior to 

summer with that of summer to weaken as the lead time increases, 

paralleling the weakening relationship between all-Ethiopian JJAS rainfall and 

tropical Pacific SST as the time of the SST retreats from JAS to May, April, 

etc. Our result (Table 3) confirms declining autocorrelations for pre-summer 

months, and thus poor relationships using January, February, or March. May 

is better autocorrelated (0.6–0.7) with the following individual months and the 

three month mean summer SSTs. Thus, in anticipating the summer ENSO 

condition based on earlier ENSO conditions, May SST anomalies have 

moderate utility, April‘s anomalies are weakly helpful, and earlier anomalies 

are virtually useless. 

 

 

Lag correlation for the Southern Oscillation index (SOI), an atmospheric 

component of ENSO, produces similar results. The SOI may be used in 

tandem with SST for a more balanced and complete ENSO representation. 

However, monthly SOI, derived from the sea level pressures of two stations, 

is ―noisier‖ than the monthly SST index. 

 

 

Methods to predict the summer ENSO state beyond simple SST 

autocorrelation could involve dynamical models, or statistical models using 

physically based predictors. We explore both approaches. The intermediate 

coupled ocean–atmosphere ENSO prediction model originally developed at 

Lamont-Doherty Earth Observatory (Zebiak and Cane 1987), with current 

version LDEO5 (Chen et al. 2004), uses sea level, winds, and SST to 

initialize the predictions. Hindcasts of Niño-3.4 SSTs for JAS were run using 
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reconstructed initialization data from a start time of June 1 (i.e., data through 

May) for each summer from 1970 to 2004. These hindcasts achieve a 

correlation of 0.9 against observations. 

 

 

To determine whether a purely statistical model based on observed data 

through May can attain similar hindcast skill, we develop linear models to 

predict the JAS ENSO state. Historical records of Niño-3.4 SSTs and SOI 

over 1951–90 are used to develop the model. Model selection is conducted 

considering individual or collective SST and SOI values of January to May as 

predictors, to predict JAS Niño-3.4 SST. Stepwise multiple linear regression 

is applied to select predictors, stopping when additional predictors no longer 

significantly enhance predictive skill. The resulting model used three 

predictors: 1) May SOI, 2) May Niño-3.4 SST, and 3) May Niño-3.4 SST 

anomaly minus the February–March average Niño-3.4 SST (MFMSST). This 

model results in a highly significant multiple R2 of 0.68 (adjusted R2 of 0.66). 

The model equation, with standardized variables, is 

 

JAS_SST = 0.116 + 0.486 x MFMSST - 0.243 x MaySOI + 0.583 x MaySST. 

 

The time series of hindcasts from LDEO5 and the multiple regression model 

are shown in Fig. 11. The regression forecasts are shown both within the 

training period (1951–90) and for an independent (1991–2004) verification 

period. The statistical model performance is slightly lower than that of 

LDEO5, as noted from the prediction differences for 1998, 2003, and 2004. 

The skills of both tools clearly indicate predictive utility for summer ENSO 

from the end of May. Even this short lead time would be valuable for early 

warning of a shift in the odds for JJAS rainfall anomalies. In actual practice, 

the regression tool can be used when more computer-intensive dynamical or 

more advanced statistical ENSO forecasts are inaccessible. 
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FIG. 11. Time series of the three-month mean (JAS) Niño-3.4 SST anomalies 

(°C) as observed for the periods 1951–2004, the model simulated using 

LDEO5, and the multiple linear regression model fitted in the present study. 

LDEO5-predicted SSTs were available for 1970–2004, whereas the multiple 

linear regression model is built based on 1951–90 and validated for the 

remaining period. 

 

 

4 Statistical rainfall predictions 

 

 

Now we describe results of prediction schemes to forecast Ethiopian rainfall 

first by exploring patterns of correlation with global SST, then using multiple 

regression and CCA as tools. We consider the simultaneous (summer) 

relationships as well as those using the states of the predictors prior to onset 

of the rainfall season. 

 

Because SST anomalies of the global tropical oceans, particularly ENSO, are 

known to physically induce shifts from the climatologically expected JJAS 
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rainfall probability distribution over Ethiopia, we anticipate certain features in 

the geographical distribution of correlation between all-Ethiopian JJAS rainfall 

and SST during May (Fig. 12, top) and August (bottom). August is used to 

represent the summer SSTs, given that SST anomalies usually change 

slowly. The distribution of correlation with August SST is seen to be roughly 

an amplified version of that with May SST. This makes sense, as it is the 

concurrent SSTs that most directly affect Ethiopian summer rainfall, and the 

May SST anomaly patterns often resemble those of August, given a 

moderate three-month autocorrelation. If an early warning procedure were 

based on this tool, updates in June and July would incorporate further 

evolution in the SST anomaly pattern after May. 

 

 

The most obvious feature in Fig. 12, both for May and August SST, is ENSO 

related, with the positive (negative) ENSO phase associated with low (high) 

seasonal rainfall. The correlation patterns over the Atlantic and Indian 

Oceans do not show strong features. Some positive correlation between 

rainfall and May SSTs appear in the off-equatorial western tropical Pacific, 

the southeast Indian Ocean, and weakly in the equatorial Atlantic. Negative 

values in the central eastern tropical Pacific are stronger for August than for 

May SSTs, as are positive correlations near Indonesia and the far eastern 

Indian Ocean. Weak negative correlations are noted in the subtropical South 

Atlantic for May SST. 

 

 

We know that the southwestern Indian Ocean supplies moisture for Ethiopian 

rainfall during JJAS through a west–east-oscillating Mascarene high pressure 

center climatologically positioned near the Mascarene Islands during northern 

summer. The mean summer 1000- and 850-hPa wind flow for the 1970–99 

period (Fig. 13) shows Mascarene and St. Helena high pressure, centered 

near 25°S, 65°E and 25°S, 5°W, respectively. 
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FIG. 12. Correlation between SST anomalies for (top) May and standardized 

all-Ethiopian JJAS rainfall anomalies observed from 1970–2004. Contour 

interval is 0.1. (bottom) Same as (top), but for August SST. Correlation 

magnitudes of 0.34 and more are statistically significant at 95% confidence 

level. 
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FIG. 13. Mean summer wind flow and locations of prominent seasonal 

synoptic systems, based on 1970–99, for (top) 850 and (bottom) 1000 hPa, 

from NCEP–NCAR reanalysis. (Figure contributed by Z. T. Segele.) 

 

 

The moist air north of the Mascarene high is forced northward through central 

equatorial Africa, finally reaching northern Ethiopia. The Congo–moist air 

boundary is a transient quasi-meridional discontinuity formed by converging 

winds from the Mascarene and St. Helena highs, and pumps moist air toward 

Ethiopia. A negative SST anomaly near the Mascarene Islands enhances the 

Mascarene high, increasing cross equatorial moisture flow toward Ethiopia. 

Weak negative SST correlations appear in the Mascarene high region in Fig. 

12. 

 

 

A weak negative correlation over the equatorial northeast tropical Atlantic, off 

the West Africa coast, may reflect the SST‘s role in modulating the strength 

and extent of the ITCZ‘s northward migration. Warm SST there encourages 

airflow (and moisture) both from Atlantic and the central Africa rain forest 

(Congo–moist air boundary) toward the warm pool, depriving Ethiopia of 

rainfall. The cloudiness off the coast of West Africa often later causes the 

positive SST anomalies to become negative. 

 

 

Positive SST correlations appearing during May and August over the western 

tropical Pacific, related partly to ENSO, may have consequences for 

Ethiopian summer rainfall through the 100–200-hPa TEJ. The northwestern 

tropical Pacific and South China Sea are source regions for TEJ, which tends 

to be stronger during positive SST anomalies in those waters. Various studies 

(e.g., Segele and Lamb 2005; Kidson 1977; Ward 1998; Grist et al. 2002) do 

not directly examine an association of TEJ strength with ENSO, or with JJAS 
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Ethiopian rainfall. However, Grist et al. (2002) and Ntale et al. (2003) indicate 

roles for easterly waves and TEJ, linking them to both ocean forcing and 

seasonal rainfall for West and eastern equatorial Africa, respectively, for their 

rainy seasons. Formal quantification of the role of TEJ in Ethiopia‘s Kiremt 

rainfall, and its association with ENSO, remains open. 

 

 

All-Ethiopian-average JJAS rainfall can be expressed as a linear combination 

of atmospheric and oceanic predictors whose values are available upon 

completion of May. We select this short lead time because much of the 

rainfall predictability comes from the ENSO state expected during summer, 

and the evolution of this state is difficult to identify earlier than the end of May. 

A linear regression model is used, candidate predictors being a selected 

subset of the available SST data including Niño-3.4 SST, SST over part of the 

southern, tropical and northern Atlantic sectors, the southwest and northwest 

Indian Ocean, and the SOI. We consider both May values and the changes of 

the predictors between February–March and May.  

 

 

The stepwise regression, after passage of diagnostics related to the fitting 

and the model assumptions, accepts three predictors: 1) the difference of 

May minus the February–March SSTs over the south Atlantic in the box 

defined by 30°–40°S, 15°–30°W (MFM_SA); 2) the difference of May minus 

the February–March Niño-3.4 SST (MFM_Niño-3.4); and 3) May Niño-3.4 

SST (May_Niño-3.4). The regression did not select SSTs in the southwest 

Indian Ocean, despite its above-mentioned possible role and its importance 

for rainfall in parts of Ethiopia as illustrated for simultaneous Indian Ocean 

SST–rainfall correlations in Gissila et al. (2004). Standardizing all variables, 

the model equation is 
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All-Eth-RAINJJAS=-0.97 X MFM_SA - 1.02 X May_Niño-3.4 - 0.44 X 

MFM_Niño-3.4 - 0.06. 

 

 

All coefficients are statistically significant at the 95% level, and the overall 

model ―goodness of fit‖ is significant at 99%. The model explains 59% of the 

total variance of all-Ethiopian JJAS seasonal rainfall (R = 0.77); the adjusted 

R2 is 0.53 (R = 0.73). Diagnostic analysis of the model reveals approximate 

normality of all variables (including rainfall), minimal serial correlations of the 

residuals, and only mild outlier presence7. 

 

 

The coefficient estimates remained stable when using cross validation 

(Michaelsen 1987) and retroactive validation methods (e.g., Barnston et al. 

1994) both widely used in climate prediction (e.g., Thiaw et al. 1999; Mutai et 

al. 1998, Gissila et al. 2004). In cross validation, a model is developed using 

all years but excluding each single year, in turn, which is predicted and 

verified in each case. The retroactive method involves partitioning the time 

series data into a training period and an independent verification period. We 

use 1970–96 for training and 1997–2004 for verification. Results using both 

hindcasting techniques are shown in Fig. 14. Models fitted and verified using 

either cross validation or retroactive techniques performed well on most wet 

years but underestimated the severity of some dry years. The skill of the 

cross-validation design is superior to that using the retroactive approach; R2 

values are 0.41 (R = 0.64) and 0.26 (R = 0.51), respectively. The smaller set 

of years validated in the retroactive scheme may have rendered its result a 

less stable estimate of the expected skill. Also, the 1-yr-out style of cross 

validation can produce still slightly inflated skills, especially when there is high 

serial correlation in the data (not found in our case). In the cross-validation 

results, the differences between the model coefficients developed with 

differing years withheld are small. 
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7 The low rainfall for 1987 is identified as an influential point (Ramsey and Schafer 2002). Four 
robust regression alternatives (least trimmed squares regression, least median squares regression, 
least absolute deviations regression, and maximum likelihood estimates of regression) were applied 
(Rousseeuw and Leroy 1987) with and without 1987, and comparison of results of the predictor 
coefficients with those of the original ordinary least squares model indicate that the original model 
performs entirely satisfactorily without special outlier accommodation. 
 

 
 

FIG. 14. Predicted and observed all-Ethiopian JJAS standardized rainfall 

anomalies. The three multiple linear regression predictors, shown in the 

equation above, include Niño-3.4 SSTs and Atlantic SSTs for the months 

prior to the beginning of the JJAS rainy season. The retroactive model is fitted 

to the data series over the training period, and then validated for 1997–2004 

(thin gray line). The cross validation model predictions (thicker gray line), and 

the observations (black line), are shown. 
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FIG. 15. Model predicted and actual all-Ethiopian JJAS standardized rainfall 

anomalies. The predictor is JAS Niño-3.4 SST anomalies (JAS_Niño-3.4) that 

are fitted to JJAS rainfall by simple linear regression. The regression model is 

statistically significant with confidence levels of 99%. The JAS Niño-3.4 SSTs 

alone explain 58% of the total variance of JJAS rainfall. 

 

 

When fitting the relationship between SSTs and rain- fall concurrently in time, 

the JAS Niño-3.4 SSTs alone explain 58% of the variance of the JJAS all-

Ethiopian rainfall (correlation 0.76) far more than any other candidate 

predictors, and a one-predictor (simple) regression is sufficient (Fig. 15). 

Gissila et al. (2004) identified the main regions of SST concurrently 

associated with Ethiopian rainfall as being the western Indian Ocean, the 

eastern Indian Ocean, and the eastern tropical Pacific. They assumed that 

these regions would remain important when used predictively, for individual 

clustering-determined homogeneous geographical sectors of Ethiopia. Our 

omission of Indian Ocean SST predictors may be attributed to use of a single 

all-Ethiopian rainfall index, and, more likely, our focus on the predictive rather 
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than the concurrent SST correlations (top rather than bottom in Fig. 12). 

Recall that when an ENSO episode develops, typically the Indian Ocean SST 

anomaly has not yet responded to the growing anomaly in the tropical Pacific 

during May or June. 

 

 

Skill in predicting all-Ethiopian JJAS rainfall is also assessed using CCA8. 

CCA identifies linear relationships between predictor and predictand in a 

manner similar to multiple linear regression, except that CCA is multivariate 

on both the predictor and the predictand sides and thus accommodates 

coupled spatial patterns linking the two fields (or two sets of fields). CCA 

involves eigenanalysis, in that a matrix of correlations between only cross-

dataset (predictor–predictand) elements is processed and then subjected to 

empirical orthogonal function (EOF) analysis. Here, to reduce noise and the 

potential for over-fitting, the predictor and predictand data individually are pre-

orthogonalized using ordinary EOF analysis before applying the CCA, and the 

CCA then receives the amplitudes of just a few EOFs of the predictor versus 

a few EOFs of the predictand fields (Barnett and Preisendorfer 1987; 

Barnston and Smith 1996; Ward 1998; Thiaw et al. 1999). Here we perform 

CCA starting with 1970–2002 gridded global sea surface temperatures as the 

predictor field and the set of Ethiopian JJAS standardized individual station 

rainfall anomalies as the predictand field. Based on skill trials using cross 

validation, we retain only two modes of predictor and predictand in the pre-

orthogonalization, and also two modes in the CCA itself. In two separate  

 

 

8 A CCA software module called Climate Predictability Tool (CPT) was 

downloaded from a Web page of the International Research Institute for 

Climate and Society (IRI) and applied to the global SST and rainfall data used 

here. 
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rounds of CCA, we first use May and then use JAS SSTs as the predictor, in 

each case using JJAS rainfall over Ethiopia as the predictand. Time evolution 

within the predictor SSTs, as might be captured by the change in SST 

anomalies from February–March to May, is not incorporated. An advantage of 

CCA is that patterns in the SST field (not just discrete SST index values), are 

related to patterns in the spatial distribution of Ethiopian rainfall anomaly (not 

just a single Ethiopia average anomaly). If most of the Ethiopian stations tend 

to have mutually coherent anomalies, as would be the case if they all respond 

similarly to ENSO, then the benefit of CCA‘s pattern accommodation may not 

be pronounced on the predictand side. 

 

 

A CCA based on 1970–2002 data between May SSTs and the set of Ethiopia 

station JJAS rainfalls—a short lead forecast—produces results as shown in 

Fig. 16. The pattern of May SSTs giving rise to skill in predicting the rainfall 

pattern over Ethiopia is shown by the spatial loading map for the leading CCA 

mode (Fig. 16, top). This pattern shows a positive ENSO phase (El Niño), 

associated with mainly negative JJAS rainfall anomalies over Ethiopia as 

seen in the predictand loading pattern (Fig. 16, middle). The bottom panel 

shows the temporal scores of the predictor and predictand associated with 

this mode. The May SST pattern appears to have good skill in capturing the 

seasonal rainfall performance observed during strong El Niño years (e.g., 

1972, 1982, 1987, and 1997) and the strongest La Niña years (1973, 1975, 

1988, and 1998). The canonical correlation, describing the strength of the 

relationship between the predictor SST patterns and predictand rainfall 

patterns (i.e., the correlation between the predictor and predictand temporal 

scores), is 0.55. 
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FIG. 16. Spatial loadings of the first CCA mode (called EOF1) for the 

prediction of (middle) Ethiopian JJAS station rainfall, based on (top) May 
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SST. (bottom) The time series of the temporal scores of the predictor SSTs 

(green line) in predicting JJAS rainfall (red line) for this CCA mode. Based on 

1970–2002 data. 
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FIG. 17. Same as in Fig. 16 [spatial loadings of (middle) Ethiopian rainfall of 

(top) SST, and (bottom) temporal scores for each], except that the SST is for 

JAS. 

 

 

When the JAS SST field is the ―predictor‖ (Fig. 17), the SST predictor loading 

pattern has a stronger tropical Pacific ENSO pattern, and includes the Indian 

Ocean to a greater degree than for May SST. This would be expected, given 

the lagged response of the Indian Ocean with respect to the tropical Pacific 

Ocean during ENSO episodes (Goddard and Graham 1999; Goddard et al. 

2001). While the predictand rainfall loading pattern is very similar to the result 

using May SST, a stronger correspondence between predictor and predictand 

temporal scores is evident (Fig. 17, bottom), with a canonical correlation of 

0.70. This implies that the May and JAS SST patterns are associated with 

nearly the same JJAS rainfall response over Ethiopia, but confidence is 

greater for JAS SSTs. Inclusion of the second CCA mode (not shown) does 

not improve predictive skill materially, as mode 2 accounts for far less 

variance than mode 1 for both May and JAS SST predictors. The 

morphologically similar result seen for concurrent SST–rainfall patterns and 

the lagged relationship suggests again that the Ethiopian rainfall anomaly 

pattern is primarily related to the accompanying summer ENSO state, and 

that successful rainfall prediction depends critically on prediction of that 

ENSO state from an earlier time. The regression results for predicting ENSO, 

presented above, demonstrated the need to ascertain the direction of change 

of ENSO from an earlier month (e.g., February or March) to May, to 

determine whether the May ENSO condition is in a growth stage or a 

dissipative stage relative to the previous 1-yr ENSO cycle. 

 

 

The temporal scores for the leading CCA predictor mode using either the May 

or JAS SST field against Ethiopia‘s JJAS rainfall station network were each 
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used separately as the single predictor in a simple regression with the all-

Ethiopian rainfall as a scalar predictand. The two simple linear regression 

models generate predicted rainfall time series as shown in Fig. 18. The 

predictions generated from the 1-mode CCA using JAS SST bear close 

resemblance with the results for multiple regression using a few scalar 

predictors (Fig.15). This indicates that the summer ENSO state is close to 

being the optimum single predictor for JJAS Ethiopian rainfall, whether the 

rainfall is described in a single index or as a more detailed anomaly pattern 

across the stations, and whether ENSO is captured in a single SST index or 

as a detailed spatial pattern. By contrast, the May SST pattern of the leading 

CCA mode predicts the all-Ethiopian JJAS rainfall anomalies much less well 

than the multiple regression whose result was shown above in Fig. 14. This 

shows that the May ENSO state alone, even as a detailed SST spatial 

pattern, cannot lead to as skillful a JJAS rainfall prediction as the May ENSO 

state plus other critical quantities most importantly, the change of the ENSO 

state between an earlier month and May. A CCA that uses both the 

February–March SST and the May SST as temporally ―stacked‖ predictor 

fields might match or exceed the multiple regression skill; such a CCA design 

could be explored in future research. 
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FIG. 18. Model simulated (lines with circles and triangles) and observed (line 

with diamonds) all-Ethiopian JJAS standardized rainfall anomalies, based on 

May and JAS CCA mode 1. The simple linear regression is fitted over 1970–

96. The skills, expressed as percentages of total variance explained, of all-

Ethiopian JJAS rainfall are 25% (May) and 49% (JAS). 

 

 

4 Discussion and conclusions 

 

 

In most of Ethiopia, adequate rainfall during the main rainy season (JJAS) is 

essential for major societal operations such as hydropower generation, 

agricultural irrigation, and drinking water. This study examines the potential 

for predictions of JJAS rainfall with a lead time sufficient for proactive risk 

management. 

 

 

A rainfall climatology is derived from a newly assembled dense network of 

Ethiopian stations for the 1970–2004 period. Previous studies suggested that 

ENSO-related SST anomalies have a predictable and physically based effect 
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on Ethiopian JJAS rainfall. Here, using the new station rainfalls, we examine 

the potential to predict JJAS Ethiopian rainfall based on the climate state prior 

to the onset of the rainy season using statistical techniques, and exploring the 

skill of statistical methods and one dynamical method to predict the all-

important summer ENSO state. 

 

 

A moderately strong teleconnective relationship between the northern 

summer ENSO state and concurrent JJAS Ethiopian seasonal rainfall is 

demonstrated, La Niña (El Niño) associating with enhanced (suppressed) 

summer rainfall across much of the country. Six out of the nine El Niño years 

in the 1970–2004 period have been in the dry tercile of the all-Ethiopian JJAS 

rainfall distribution, while seven out of the eight La Niña years have been in 

the wet tercile. The ENSO response is strongest over the northern half of the 

country where the rainfall patterns often depend on the northward advance of 

the ITCZ during northern summer (Segele and Lamb 2005; Tsegay 2001; 

Fraedrich et al. 1997). A relationship between the seasonal oscillation of ITCZ 

and ENSO, and consequences for Ethiopia‘s JJAS rainfall, has been 

suggested (Degefu 1987; Seleshi and Demarée 1995; Segele and Lamb 

2005). 

 

 

One linkage scenario involves a weakening and retreating of ITCZ as El Niño 

episodes begin maturing during late northern summer; the converse would 

occur in the case of La Niña. In particular, the northward protruding 

meridional arm of ITCZ associated with rainfall in central and northern 

Ethiopia, depending on cross-equatorial northward flow of moist air, may be 

affected by ENSO. 
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It is found possible to use the presummer ENSO state, and its direction and 

rate of evolution, as a simple statistical precursor for the ENSO state during 

the coming summer season, and consequently the summer seasonal rainfall. 

 

 

Because of the changeable and uncertain evolution of the ENSO state during 

northern spring season (the ENSO ―predictability barrier‖), the strength of 

association between ENSO and JJAS rainfall decreases sharply as the time 

of the ENSO state retreats to progressively earlier months—particularly from 

May backward. The May ENSO state alone provides some indication of the 

summer Ethiopian rainfall, but the temporal change of May SST from a few 

months earlier is an essential additional predictor for JJAS ENSO (and hence 

rainfall), discriminating between growing and decaying ENSO episodes. The 

LDEO5 intermediate dynamical ENSO prediction model is found to produce 

skillful ENSO forecasts for the northern summer season using initialized SST 

data through the end of May. Simple statistical models based on historical 

Niño-3.4 SST index and SOI in May, and the change from several months 

earlier, are also shown to produce skillful forecasts of the July–September 

(JAS) Niño-3.4 SSTs. This simple model could be used in the absence of 

significant resources and would be further enhanced by merging it with 

outputs from dynamical ENSO forecasting models such as LDEO5 or others. 

The northern spring barrier is more than halfway traversed by the end of May 

and a moderately skillful summer forecast can be made at this short lead 

time. When and if ENSO can be better predicted through this difficult time of 

year, longer lead forecasts could be made for Ethiopian summer rainfall. 

 

 

Rainfall teleconnections to SST regions other than the tropical Pacific are 

considerably weaker and of smaller spatial scale, and include the Indian and 

Atlantic Oceans both during and preceding summer.  
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Multiple linear regression and CCA models are developed to predict JJAS 

rainfall directly, without predicting the summer ENSO state explicitly. Multiple 

regression is applied to all-Ethiopian JJAS rainfall, using SST indices and SOI 

as predictors. The stepwise design selected May Niño-3.4 SSTs, its recent 

time derivative, and the recent time derivative of SSTs in the subtropical 

South Atlantic, explaining 59% of the interannual all-Ethiopian JJAS rainfall 

variance. Pertinent to the key role of the ENSO state to occur during the 

summer season, the JAS Niño-3.4 SSTs can be used as an alternative 

―predictor‖ (after being predicted earlier) that alone would have a better 

predictive skill score than the above three precursor variables do together. Of 

course, operational use of this latter model unrealistically requires perfect 

forecasts for the Niño-3.4 SST. Again we conclude that ENSO predictability is 

currently the missing requirement for more skillful rainfall forecasts at longer 

lead times. 

 

 

The CCA defines spatial pattern relationships between global SST and JJAS 

Ethiopia station rainfalls. The simultaneous SST–rainfall patterns strongly 

confirm the impact of ENSO, and indicate a lesser role for SSTs near the 

source regions of monsoonal low-level systems near southwest India and in 

South Atlantic. These conclusions also apply to the CCA using leading May 

SSTs. 

 

 

In summary, this study‘s main finding is that the northern summer ENSO 

condition is overwhelmingly the single most important factor governing the 

JJAS rainfall across Ethiopia, excluding the southern/southeastern lowlands. 

SST anomalies in the Atlantic and Indian Oceans appear to matter far less. 

More regional climate and weather processes were not investigated here, but 

could be tied into this larger scale. Skillful predictions of Ethiopian summer 

rainfall hinge upon the best possible forecasts of the summer ENSO state 
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from an earlier time. Useful summer rainfall predictions are thus potentially 

achievable using global dynamical or statistical models. Further study may 

extend knowledge to more regional scales, particularly using regional models 

that reproduce large-scale processes (e.g., ITCZ, middle- and upper-

troposphere circulations), and downscale for local land surface variations. In 

the meantime, existing statistical modeling techniques, aided by statistical or 

dynamical predictions of the summer ENSO state, allow for improved use of 

seasonal rainfall forecasts for sustainable, dependable early warning systems 

so critically important to societal operations. 
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Abstract  

 

In 2011, drought in the Horn of Africa again made news headlines. This study 

aims to quantify the meteorological component of this and other drought 

episodes in Ethiopia since 1971. A monthly precipitation data set for 14 

homogeneous rainfall zones was constructed based on 174 gauges, and the 

standardized precipitation index was calculated on seasonal, annual, and 

biannual time scales. The results point to 2009 as a year of exceptionally 

widespread drought. All zones experienced drought at the annual scale, 

although in most zones, previous droughts were more extreme. Nationally, 

2009 was the second driest year, surpassed only by the historic year 1984. 

Linear regression analysis indicates a precipitation decline in southern 

Ethiopia, during both February–May and June–September. In central and 

northern Ethiopia, the analysis did not provide evidence of similar tendencies. 

However, spring droughts have occurred more frequently in all parts of 

Ethiopia during the last 10–15 years. 
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1 Introduction 

 

 

As reported by news media and aid organizations, the recent drought in the 

Horn of Africa has had devastating consequences. The year leading to June 

2011 has been claimed to be the driest in 60 years in some regions of 

Somalia, northern Kenya, and southern Ethiopia (USAID/FEWS 2011). 

Considering Ethiopia, how does the recent meteorological situation compare 

with previous droughts? In a gauge-based precipitation data set for 14 

Ethiopian rainfall zones during 1971–2011, 2009 was the second driest year 

nationally, surpassed only by the catastrophic 1984 drought. 

 

 

In southern Ethiopia, the data indicate that there has been a general decline 

in precipitation during this period. Ethiopia is frequently portrayed as a 

drought-stricken country, both in the media and the scientific literature 

(McCann 1990). A brief Internet search for drought in Ethiopia during 1999–

2011 produced hits at news media and aid organizations for every year, 

except 2001 (e.g., Bhalla 2000; Addis 2009; CERF 2006; Nebehay 2011). As 

many of these reports are spot interviews in local communities, two factors 

may distort the meteorological information provided: the climatic diversity of 

Ethiopia and the difference between meteorological, hydrological, agricultural, 

and socioeconomic drought. 

 

 

In the news media, the words famine and drought are used almost 

interchangeably (McCann 1990), not taking into account that famines are as 

much social as natural disasters (Sen 1981; Torry 1986; Webb et al. 1992; 

Conway and Schipper 2011; Broad and Agrawala 2000). Webb et al. (1992), 

referring to Harrison (1988), noted that although 21 countries in Sub-Saharan 

Africa experienced a severe drought in 1984/1985, only a handful of these 
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countries suffered famine. Drought-related famine is the result of several 

factors, where the lack of precipitation is only the first (Webb et al. 1992). This 

means that famine, in itself, cannot be taken as evidence of drought, while it 

is also not possible to assess the role of societal conditions without 

knowledge of the extremeness of the precipitation deficits. 

 

 

The fact that the mean annual precipitation in parts of the Ethiopian highlands 

exceeds 2,000 mm (Griffiths 1972) may make the impression of Ethiopia as 

dry countries seem paradoxical. In the other end of the scale, arid/semiarid 

regions in the lowland receive a meager 300 mm. From the conditions on the 

ground, it may be difficult to distinguish between a dry climatology and 

drought in the sense of abnormally little precipitation. The strong seasonality 

of precipitation adds to the confusion. A dry summer season has more severe 

effects in the north than in the south, where not much rain can be expected to 

fall at that time of the year (Griffiths 1972; Korecha and Barnston 2007). In 

this study, the term drought is reserved for precipitation deficits that are 

outside of the normal range. It does not take into account that some regions 

may have generally dry or frequently varying conditions. 

 

 

The incomplete link between precipitation and water availability also blurs the 

picture. In addition to hydrological factors such as evaporation and runoff, 

social constructions affect the amount of available water per capita (Mishra 

and Singh 2010). Due to the high population density, there are regions in the 

Rift Valley and the central Ethiopian highlands that must be considered 

extremely water-limited, despite annual precipitation of more than 1,000 mm 

(Funk et al. 2005). 
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Such increasing water demands may be interpreted as a reduction in 

precipitation. Farmers in northern Ethiopia claim to have shifted to more 

drought-resistant crops due to declining rainfall during the last couple of 

generations (Meze-Hausken 2004). However, there is little evidence for 

precipitation trends in this region, neither in seasonal precipitation amounts 

nor in the frequency and intensity of extreme events (Meze-Hausken 2004; 

Seleshi and Camberlin 2006; Seleshi and Zanke 2004; Bewket and Conway 

2007). On the other hand, precipitation declines in southern and eastern 

Ethiopia have been documented, most strongly for the spring season (Seleshi 

and Camberlin 2006; Seleshi and Zanke 2004; Williams and Funk 2011; Funk 

et al. 2008). 

 

 

Using gauge observations through May 2011, we present updated trend 

analyses for two separate regions: southern Ethiopia, which relies most 

strongly on the spring (February–May) rains, and central and northern 

Ethiopia, where the summer (June–September) is the main rainy season. In 

addition, the aim of this study has been to quantify the meteorological severity 

and rank of historic drought episodes. The standardized precipitation index 

(McKee et al. 1993) is used as a drought measure in each of 14 Ethiopian 

rainfall zones. Drought-related famines in Ethiopia have been documented 

from 253BC till the 1990s (Degefu 1987; Webb and Braun 1994; Webb et al. 

1992) and supplemented by precipitation studies for the last decades 

(Korecha and Barnston 2007; Segele and Lamb 2005; Seleshi and Zanke 

2004; Williams and Funk 2011), as well as local and regional drought studies 

(Gebrehiwot et al. 2011; Bewket and Conway 2007; Edossa et al. 2010). But 

a regional and nationwide comparison of the precipitation during different 

drought episodes is still missing. We will discuss the following years: 1972–

1975, 1984, 1987, 1990–1992, 1999–2000, 2002–2003, and 2008–2011, with 

emphasis on the most recent event. 
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2 Data and methods 

 

The 14 homogenous rainfall zones described in Korecha and Sorteberg 

(submitted to the International Journal of Climatology, 2012) were used to 

represent different parts of Ethiopia. Monthly precipitation for each zone was 

calculated for 1972–2011, and the standardized precipitation index (McKee et 

al. 1993) was used to identify droughts during this period. The standardized 

precipitation index (SPI) is a statistical measure indicating how unusual an 

event is, making it possible to determine how often droughts of a certain 

strength are likely to occur. SPIs may also be compared directly between 

different locations. However, the practical implication of an SPI-defined 

drought, the deviation from the normal amount of precipitation, will vary from 

one place to another. In order to address this question, the percentage of the 

normal amount of precipitation was also calculated for periods of SPI-defined 

drought. 

 

 

All drought measures were calculated based on accumulated precipitation at 

several time scales. Long-time drought was considered at time scales of 12 

and 24 months, and the 4-month indices for May and September were used 

to describe the spring and summer seasons, respectively.  

 

 

2.1 Precipitation data 

 

2.2 Gauge-based zone precipitation 

 
 

Korecha and Sorteberg (submitted to the International Journal of Climatology, 

2012) identified 14 homogeneous rainfall zones covering all of Ethiopia, and 

details of the different zones may be found there. In Fig. 1, these zones are 
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plotted in a vegetation map. Ethiopia is located in the inner part of the Horn of 

Africa, within 3–15° N and 33–48° E, with Eritrea to the north, Djibouti to the 

east, Sudan to the west, Kenya to the south, and Somalia to the south and 

east. The Ethiopian plateau, constituting most of the green area in the 

vegetation map, is divided by the Rift Valley, running southwest–northeast, 

from zone I through parts of zones XA, IX, VIII, VII, and XII-B. 

 

 

For each zone, a time series of monthly precipitation for January 1970–May 

2011 was made, based on monthly data for 238 gauge stations obtained from 

the National Meteorological Agency of Ethiopia. First, the monthly climatology 

of each station was calculated and averaged over the stations in the zone to 

produce the zone climatology. Similarly, station anomalies were calculated for 

each month in the record, using the fraction of the climatological values at 

each station, and these values were averaged to produce a time series of 

zone anomalies. The anomaly series was then multiplied by the zone's 

climatology to obtain a time series of monthly precipitation in the zone. When 

calculating the climatology of the zones, only stations having data for at least 

50 % of each calendar month during the reference period 1971–2000 were 

used. For stations to be used in the subsequent anomaly calculations, the 

corresponding requirement was set to 70 %. As a result, 174 stations were 

used in the climatology, and 132 stations in the time series. Due to the spread 

of observations, shown in Fig. 1, the number of stations differs from zone to 

zone and month to month, ranging from one in the southwestern lowlands 

(zone V) to a maximum of 40 in the central highlands (zone IX). 

 

 

When calculating the climatology of the zones, only stations having data for at 

least 50% of each calendar month during the reference period 1971–2000 

were used. For stations to be used in the subsequent anomaly calculations, 

the corresponding requirement was set to 70 %. As a result, 174 stations 
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were used in the climatology, and 132 stations in the time series. Due to the 

spread of observations, shown in Fig. 1, the number of stations differs from 

zone to zone and month to month, ranging from one in the southwestern 

lowlands (zone V) to a maximum of 40 in the central highlands (zone IX). 

 

 

Fig. 1 Ethiopian climate zones and stations (markers: white used for 

climatology, red for time series). Background satellite photo: NASA/ 

www.maplibrary.org 

 

 

In five cases of single months with missing data in one of the zones, the 

anomaly fraction from that neighbor zone with the most similar seasonal cycle 

was used to estimate monthly precipitation for this zone. The main purpose of 

this filling was to avoid long-lasting gaps in the accumulated 12- and 24-

month precipitation used in the SPI calculations. Apart from this, missing data 

were not adjusted. 

 

 

Precipitation trends for 1971–2010 were calculated for two regions: One 

consisting of the zones where the northern hemisphere summer, June–
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September, is the main rainy season and one of zones where spring, 

February–May, is the main rainy season. For each of these regions, and 

nationally, the monthly precipitation in each zone was weighted by the area of 

the zone and averaged to produce the regional mean precipitation. For each 

region, and for the country as a whole, trend analysis was performed for the 

summer and spring seasons used to define the regions, as well as for the fall 

season, October–December. 

 

 

Trend lines were estimated by linear regression, using the least squares 

method, and the slope of the regression line tested at the 0.05 level of 

statistical significance. Bootstrapping was also used to calculate a mean 

slope value and the 95% confidence interval. Two nonparametric tests were 

applied to test the significance of the slope: the Spearman's rho test and the 

Mann–Kendall test. As the power of these tests in detecting trends is similar 

(Yue et al. 2002), and no practical differences between them appeared in our 

results, only the outcome of Spearman's rho test will be shown. 

 

 

2.1.2 Global Precipitation Climatology Project 

 

 

Data from the Global Precipitation Climatology Project (GPCP) (Adler et al. 

2003; Huffman et al. 2009) was used for comparison with the zone data in 

selected years. This is a merged data product that incorporates precipitation 

estimates from satellite microwave and infrared data and surface rain gauge 

observations. Version 2.2 of the monthly data, with a resolution of 2.5° 

latitude and longitude, was used. 
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2.3 ERA-Interim reanalysis data 

 

ERA-Interim reanalysis data were used to describe anomalies in the moisture 

flux field in the spring and summer of 2009. ERA-Interim is produced by the 

European Centre for Medium-Range Weather Forecasts at a resolution of 

about 0.75° latitude and longitude, with 60 vertical levels and a 4-D variational 

assimilation system (Simmons et al. 2006; Uppala et al. 2008; Berrisford et al. 

2009). The ERA-Interim vertically integrated moisture flux was calculated by 

the Climate Analysis Section at the National Center for Atmospheric 

Research, using methods described in Trenberth et al. (2002). 

 

 

2.4 Classifying drought using the standardized precipitation 

index 

 

The SPI (as described by McKee et al. 1993) was used to define drought 

periods. Requiring only precipitation as input, the SPI covers a variety of time 

scales and allows comparison of drought severity both between periods in 

time and between different locations. Drying soil is the result of several 

factors, where precipitation is only the first. More complicated drought indices, 

like the Palmer Drought Severity Index (Palmer 1965) may be favored in 

regions where the variability in evapotranspiration is high. On the other hand, 

the introduction of evapotranspiration rates introduces another element of 

uncertainty into the calculations (Lloyd-Hughes and Saunders 2002). It is 

important to acknowledge that drought conditions may be modified by 

evapotranspiration, but as the variability of precipitation is often greater than 

the variability of evapotranspiration (Ntale and Gan 2003), drought indicators 

based purely on precipitation give a good overall view of the situation. In 

regions like Ethiopia, where the access to data is limited, there are good 

reasons for choosing a precipitation-based drought measure. 
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McKee et al. (1993) defined the following four drought categories: mild 

drought (SPI between 0 and −0.99, occurring 24 % of the time), moderate 

drought (SPI between −1.00 and −1.49, occurring 9.2 % of the time), severe 

drought (−1.50 to −1.99, occurring 4.4 % of the time), and extreme drought 

(SPI −2.00 or less, occurring 2.3 % of the time). A drought event may then be 

defined as a period during which the SPI is continuously negative and 

reaches a value of −1 or less at one or more time steps. Drought begins when 

the SPI first falls below zero and ends with the first positive value (McKee et 

al. 1993). The SPI may be calculated at any time scale, depending on which 

effect of drought one wishes to detect. Edwards and McKee (1997) 

suggested using 3-month accumulated precipitation in the SPI for a short-

term or seasonal drought index, a 12-month SPI for an intermediate-term 

drought index, and 48 months for a long-term index. In this study, SPIs were 

calculated for intermediate- to long-term periods of 12, 24, and 48 months. To 

assess seasonal drought, the 4-month accumulation was calculated for May 

and September, as this is the most commonly used of the definitions of the 

spring and summer seasons in Ethiopia. 

 

 

2.3.1 Defining and calculating the SPI 

 

 

A simple way to describe precipitation anomalies, is to use a standard Z-

score, 

s

xx
Z


 , where x is the observed precipitation value, and x  and s the mean 

and standard deviation, respectively, over a defined period. Z is the number 

of standard deviations that the observation is from the normal, assuming that 

the observations are normally distributed. 
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Precipitation is normally not normally distributed, and McKee et al. (1993) 

proposed a simple solution to this problem by applying a gamma 

transformation to the distribution. First, the gamma distribution is fitted to the 

observed precipitation. The SPI values are then assumed to be normally 

distributed and are found by comparing two cumulative distribution functions: 

that of the gamma-distributed precipitation and the normally distributed SPI 

values. The SPI of a specific observation of precipitation is the standard 

deviation of the normal curve at the same cumulative probability level as the 

precipitation. 

 

 

This principle is illustrated in Fig. 2. The left panel shows a histogram made 

from example observations of precipitation, as well as the gamma probability 

function fitted to the distribution. The panel in the middle shows the 

corresponding empirical and theoretical cumulative probability distributions. 

To the right is a graph of the cumulative probability of the normal distribution. 

The SPI of a specific precipitation value is found by going from the gamma 

cumulative distribution function (CDF) to the normal CDF at the same 

cumulative probability level (arrow). The SPI is then the number of standard 

deviations from the mean of the normal distribution. 

 

 

The procedure described in Edwards and McKee (1997) was used for 

calculating SPIs, using monthly zone precipitation as input. To determine the 

SPI for a specific zone, precipitation was summed over the time scale of 

interest, separately for each month—up to and including this month. For, e.g., 

a 3-month SPI, each value in the input record is the sum of this month and 

the two previous months. A gamma distribution is then fitted to the set of 

three-monthly values of accumulated precipitation.  
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The gamma probability distribution function is defined as 

)(
)(

1

 






 xex
xg  for x > 0, where x is precipitation, α the shape parameter, β the scale 

parameter and Γ(α) the gamma function,  





0

1)( dtte t   

The corresponding cumulative probability of a specific amount of precipitation, x, 

occurring for a given month and time scale is given by 


x

dxxgxG
0

)()(  

The gamma distribution parameters were calculated as maximum likelihood 

estimates using Matlab. 

 

 

As the gamma distribution is defined only for x>0, any observations of zero 

precipitation must be treated separately. Let q be the probability of a zero, 

defined as the ratio of the number of zeros to the total number of 

observations. Then, the cumulative probability of a specific amount of 

precipitation is given by 

 

)()1()( xGqqxH   

 

Fig. 2. Calculating the SPI. a) Bar histogram of a sample distribution of 

monthly precipitation, with the number of occurrences in each of nine equally 

spaced precipitation classes. The red curve is the gamma probability 

distribution function fitted to these data. b) The empirical cumulative 
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probability distribution of the same data (markers), with the corresponding 

cumulative distribution function (CDF) of the fitted gamma function (red 

curve). c CDF of the standard normal distribution. As indicated by the arrows 

in b and c, the SPI of a specific precipitation value may be found graphically 

by locating the gamma CDF value corresponding to this precipitation and go 

to the same level of the normal CDF (horizontal arrow). The SPI is then the 

standard deviation of the normal distribution at this level, found at the 

horizontal axis; in the example equal to −1. This is equivalent to fitting a 

gamma function to the data and then assumes that the SPI describing them is 

normally distributed. 

 

 

2.3.2 Representativeness of the SPI as a measure of drought 

 

 

The SPI benefits from being simple to calculate, depending only on 

precipitation, but the method also has some shortcomings. The main ones 

are that it is a purely statistical measure, that it depends on the assumptions 

of gamma distributed precipitation and normal-distributed SPIs, and that 

records with low climatological precipitation may give misleading results. 

 

 

As described by McKee et al. (1993), the SPI is uniquely related to 

probability. This is one of its main benefits, as specific values will be reached 

at specific frequencies, allowing comparison across time and space. The 

assumption that the SPI values are normally distributed further implies that 

wet and dry periods, as well as wet and dry climates, will be represented in a 

similar way. On the other hand, this also means that the SPI may not be used 

to identify regions that are more drought-prone than others. The frequency of 

extreme drought is the same for all regions, wet or dry. 
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The SPI may be altered by fitting other distribution functions than the gamma 

function to the precipitation data. Guttman (1999), testing various functions 

(two-parameter gamma, three-parameter Pearson type III, three-parameter 

generalized extreme values, four-parameter kappa, and five parameters 

Wakeby), concluded that the Pearson type III was the best universal model, 

as it performed well for both wet and dry events. For dry events, however, 

their assessment showed that there was little difference in the number, 

duration, intensity, or regional variation of the events as portrayed by the 

distributions compared. 

 

 

Ntale and Gan (2003) compared different drought indices for East Africa, 

concluding that a modified SPI was the best indicator for monitoring East 

African droughts. Their modifications included replacing the gamma 

distribution with a plotting position formula to describe the cumulative 

probability distribution of precipitation. Finding the normality assumption of 

the SPI to be a less good approximation on time scales of 6 months or 

shorter, they used the Pearson type III distribution to describe the SPIs. The 

downside of this procedure is that it generates a drought classification in 

which the SPI range of each category varies with the time scale of the 

drought. 

 

 

In dry regions, and regions where precipitation is predominantly seasonal, the 

statistical nature of the SPI may produce results that are easily 

misinterpreted, or have limited value, especially on shorter time scales. In the 

highlands of Ethiopia, the northern hemisphere summer is the main rainy 

season, whereas the northern hemisphere winter is mainly dry (Griffiths 1972; 

Korecha and Barnston 2007). In a running 3-month SPI, small absolute 

deviations in winter precipitation will generate more extreme SPI fluctuations 

than larger absolute deviations in summer precipitation. The implications of a 
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lack of rain during summer are clearly much more severe. On the other hand, 

even though the SPI is theoretically unbounded, the existence of zeros in the 

precipitation records introduces a lower bound (Wu et al. 2007).  

 

 

According to Guttman (1999), the number of data points also limits the range 

of the SPI, and SPIs with time scales longer than 24 months may be 

unreliable. McKee et al. (1993) recommended using record containing at least 

30 years of data when calculating the SPI. Comparing scale of ∼30 and ∼100 

years, Wu et al. (2005) concluded that different lengths of records could give 

different results, especially for long time scales and especially when 

evaluating the severity of severe droughts. Despite the limitations of the 

gamma-based SPI, there are good reasons for using it as a drought indicator, 

one of them being that it is easily calculated and easily interpreted. An 

analysis of the physical meaning of the parameters (α and β) in the gamma 

distribution in African climates is presented in Husak et al. (2007). Regions 

are described on a monthly basis as either scale-dominated, with variable 

rain and more extreme events, or shape-dominated, with consistent rain and 

fewer extreme events. Overall and for all months, they find the gamma 

distribution to be suitable for roughly 98 % of the cells in a 0.1° grid over 

Africa.  

 

 

3 Regional variations and the seasonal precipitation cycle 

 

 

In Ethiopia, the elevation ranges from 130 m below sea level in the dry 

Denakil depression in the northeastern lowlands (zone I, Fig. 1) to 4,550 m 

above sea level on Ras Dashen in the northern highlands (zone III). The 

climatological variation is correspondingly large, both in total precipitation 
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amounts and in the seasonality of the precipitation. As shown in Fig. 1, the 

vegetation goes from arid/semiarid in the lowlands in the southeastern 

lowlands (zone XII-A) and northeastern Rift Valley (zone 1), to lush green in 

the highlands and part of the Rift Valley cutting through them, from the 

southwest to the northeast. The vegetation map reflects the distribution of 

precipitation. As shown in Fig. 3, the annual precipitation ranges from less 

than 300 mm in the northeastern and southeastern lowlands (zones I and XII-

A) to more than 1,700 mm in the southwestern rain forest (zone VI). 

 

 

The seasonal precipitation cycle varies mainly from the southeast to the 

northwest, as seen by comparing the seasonal share of the annual 

precipitation, in the lower panel in Fig. 3. The northern hemisphere spring 

season, February–May, plays a role in most of the country, with shares of the 

annual precipitation ranging from 12 % in the northwestern highlands (zone 

IV) to 62 % in the southeastern lowlands (zone XII-A). In the three 

southernmost zones, spring is the wettest season. The spring rains are 

important not just for the spring crops, accounting for 5–15 % of the national 

food crop, but also for improving pasture for livestock and for the planting of 

long-season crops that are harvested in September–December (Degefu 

1987; Funk et al. 2003; McCann 1990). The interannual variability of the 

spring rains is higher than the summer rains, and on resource poor farms, the 

spring crop may be what determines whether the annual productivity reaches 

the critical margin (McCann 1990). 

 

 

June–September is the main rainy season in the rest of the country, 

contributing to more than 70 % of the annual precipitation in the north and 

northwest (Fig. 3). About 85–95 % of the Ethiopian food crop is produced in 

this season (Degefu 1987). In the northern highlands (zone III), a substantial 

part of the annual precipitation falls in July–August (Fig. 3). This is the time 
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when the tropical rain belt associated with the intertropical convergence zone 

is at its northernmost position, above northern Ethiopia and Eritrea (Leroux 

2001; Degefu 1987). 

 

 

The only region where June–September cannot be considered a rainy 

season, is in the southern and southeastern lowlands (zones XII-A and XII-B). 

In addition to spring, October–November is important in the south and 

southeast, providing 20–26 % of the annual precipitation. The actual amount 

of precipitation falling in October–November is as high, or higher, in parts of 

the highlands as in the dry lowlands. Still, in the highlands, both the spring 

and the summer precipitation exceed that of October–November (Fig. 3). 

Together with December–January, this is mainly a harvest season (Degefu 

1987). 

 

 

 

 

Fig. 3 The seasonal precipitation cycle in Ethiopian rainfall zones: 1971–2000 

monthly mean precipitation [in millimeters] (first row; left color bar), annual [in 

millimeters] (first row; middle color bar), and monthly (second row) and 

seasonal (third row) percentage of annual precipitation (right color bar and 

white numbers in the seasonal maps)  
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During December–January, no part of the country receives more than 6 % of 

the annual precipitation, in several zones as little as 1 % (Fig. 3). The rain 

that occasionally falls during these months is important for grazing cattle and 

the absence such rainfall in 1983–1984 marked the beginning of catastrophic 

1984 drought (Degefu 1987). However, as these months are generally dry, 

they constitute a barrier between the growth seasons. Thus, it is practically 

meaningful to consider the 12-month accumulated precipitation at the end of 

the year as a collective drought measure for the year. 

 

 

4 Comparison of drought episodes 

 

Drought has occurred at different times in different parts of Ethiopia. This is 

partly a result of the variation in the seasonal precipitation cycle; as discussed 

in Section 3, the impact of missing rain during spring or summer is not the 

same in all zones. Webb et al. (1992) identifies the southern, southeastern, 

and northeastern parts of Ethiopia as most often affected by drought and 

famine. This is equivalent to zones I, II, VII, XII-A, and XII-B and parts of VII, 

X-A, XB, and III. Three factors are mentioned as differing in these regions, 

compared to the rest of the country: population pressure, agro-ecological 

resource base, and climate (Webb et al. 1992). In the first part of this section, 

the standardized precipitation index is used to assess the severity of drought 

episodes during 1972–2011. Then, the most severe year during the last 

decade, 2009, is discussed in more detail.  

 

 

When discussing drought, precipitation anomalies during seasons with low 

mean precipitation in each zone will not be taken into account. This does not 

mean that less than normal precipitation at this time of the year is without 

consequences, e.g., for specific crop types, but that precipitation deficiencies 

during the dominant rainy seasons have a much larger impact. The timing of 
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the onset and cessation as well as the frequency and duration of dry spells 

during the season also have an impact on the effect of Ethiopian droughts 

(Segele and Lamb 2005). This question has not been addressed, as only 

monthly precipitation data were available. 

 

 

4.1 Severity of drought episodes since 1971 

 

 

Mild drought occurred in parts of the Rift Valley and the northeastern 

highlands at the end of 1971. But 1971 was not particularly dry, and data for 

this year have not been included in Fig. 4, showing the 12-month SPI in 

December in each of the zones during 1972–2010. The rank of the SPI is the 

same as the rank of the annual precipitation. As the maps indicate, well-

known drought episodes are associated with different degrees of severity on 

the SPI classification scale described in Section 2.3. Some years, like 1984, 

2002, and 2009, were dry in most of Ethiopia, whereas other episodes, like 

the drought in the south in 1999–2000, affected more limited regions. Similar 

to the annual values in Figs. 4, 5, and 6 show 4-month SPI values in May and 

September, representing spring and summer, respectively. 

 

 

SPI values are statistical expressions of the severity of a drought, relative to 

how unusual each drought level is. It is not possible to infer anything about 

the amount of missing water from SPI values. As a measure of the 

precipitation deficiency, Fig. 7 shows the percentage of the annual 

precipitation corresponding to the annual SPI droughts in Fig. 4. The relative 

reduction of precipitation in unusually dry years is higher in dry zones like the 

northeastern Rift Valley (I) and the southern (XII-B) and southeastern (XII-A) 

lowlands than in precipitation-rich zones like the central highlands (IX) and 

the southwestern rain forest (VI). For example, the year 1984 was the driest 
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in the record in both the northeastern Rift Valley (I) and the northeastern 

highlands (II); the northeastern highlands being most extreme on the SPI 

scale (Fig. 4). Still, the relative reduction in precipitation (Fig. 7) was larger in 

the northeastern Rift Valley, which received only 18 % of the annual mean 

precipitation this year, compared to 59 % in the northeastern highlands. 

 

 

The following sections describe selected drought periods, with reference to 

Figs. 4, 5, 6, and 7. SPI maps for every month at time scales of 3, 4, 6, 9, 12, 

and 24 months have also been examined, but are not shown. When 

discussing seasonal drought, the 4-month time scale for May (spring) and 

September (summer) is used, unless otherwise specified. 

 

 

4.1.1 1972–1975 

 

 

The 1972–1975 drought may mainly be considered a combination of distinct 

episodes, and most of Ethiopia experienced moderate, severe, or extreme 

drought at some stage. The most extreme single season was the spring of 

1973, which was severely or extremely dry in a band crossing the country 

from the southwest to the northeast. In 6 of the 14 zones, this was one of the 

three driest spring seasons during 1972–2011 (Fig. 5). The following summer 

was not particularly dry, but 1973 still ended up among the one–five driest 

years in four zones—in the eastern highlands (XIIA), the driest, with 63 % of 

the annual mean precipitation (Fig. 7). In half of the zones, this was the 

second drought year in a row. In 1974 and 1975, seasonal drought occurred 

in some zones, but the wet summer of 1975 led to above-normal precipitation 

in most of the country, except in the southeast. 
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4.1.2 1980–1982 

 

 

During the early 1980s, drought occurred in different parts of the country at 

different times. In 1980, the southeastern lowlands (zone XII-A) experienced 

severe drought at all the time scales considered, with extreme drought at time 

scales of 6–24 months. As shown in Fig. 4, this was the driest year in this 

zone. The summer of 1982 was severely dry in the northern (III), 

northwestern (IV), northeastern (II), and central (IX) highlands, making this 

the driest year in the northwestern highlands (IV; Fig. 6). 

 

 

 

Fig. 4 Severity of droughts on the annual scale, as time series and maps for 

Ethiopian rainfall zones. Data: 12-month SPI for December during 1972–

2010, showing only years when there was an SPI-defined drought, as 

described in the text. The small maps to the left show the location of the 

zones, in red. For each zone, annual SPI values are presented as a row of 

rectangles, with colors indicating the severity of drought relative to the SPI 

scale in the upper right corner. Gray horizontal bars represent missing values. 

The white numbers in the 
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rectangles show the rank of each year among the driest for each zone. The 

colored dots at the horizontal axis mark years when at least one zone was at 

its driest during the record. The row of maps below the set of zone time series 

summarizes the situation for the country from year to year. Well-known 

drought years have been marked with orange under these maps. 

 

 

Fig. 5 Severity of spring droughts, as time series and maps for Ethiopian 

rainfall zones. Data: 4-month SPI for May (i.e., based on February–May 

accumulation) during 1972–2011, showing only years when there was an 

SPI-defined drought, as described in the text. The small maps to the left show 

the location of the zones, in red. For each zone, spring SPI values are 

presented as a row of rectangles, with colors indicating the severity of 

drought relative to the SPI scale in the upper right corner. Gray horizontal 

bars represent missing values. The white numbers in the rectangles show the 

rank of each spring among the driest for each zone. The colored dots at the 

horizontal axis mark springs when at least one zone was at its driest during 

the record. The row of maps below the set of zone time series summarizes 

the situation for the country from year to year. 
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Fig. 6 Severity of summer droughts, as time series and maps for Ethiopian 

rainfall zones. Data: 4-month SPI for September (i.e., based on June–

September accumulation) during 1972–2010, showing only years when there 

was an SPI-defined drought, as described in the text. The small maps to the 

left show the location of the zones, in red. For each zone, summer SPI values 

are presented as a row of rectangles, with colors indicating the severity of 

drought relative to the SPI scale in the upper right corner. Gray horizontal 

bars represent missing values. The white numbers in the rectangles show the 

rank of each summer among the driest for each zone. The colored dots at the 

horizontal axis mark summers when at least one zone was at its driest during 

the record. The row of maps below the set of zone time series summarizes 

the situation for the country from year to year. 

  

4.1.3 1984 

 

Webb et al. (1992) noted that when severe drought hit Ethiopia in 1984, the 

famine was already under way, as a result of dry episodes during the 

previous years. Although 1983 was close to normal in most of Ethiopia, a dry 

season in the winter of 1983–1984 caused problems for livestock and led to 

pastoralist movements as early as January 1984 (Degefu 1987). Segele and 

Lamb (2005) also extensively demonstrated the severity of the 1984 drought 

over Ethiopia, particularly during the summer season.  
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As shown in Figs. 4, 5, and 6, the drought in 1984 was severe in the 

northeastern half of the country, while all zones were affected at the seasonal 

level. In half of the zones, 1984 was among the three driest years, being the 

driest in the northeastern Rift Valley (zone I), the northeastern highlands (II), 

the central highlands (IX), and the central Rift Valley (VIII). The northeastern 

Rift Valley (I) received only 18 % of its mean annual precipitation (Fig. 7), by 

far the highest relative deviation in any zone during 1972–2010. The severity 

of the 1984 drought was strengthened as all the three rainy seasons were dry 

in those parts of the country where they are effective. April and August were 

the most extreme months, and a dry October contributed to the mild–

moderate drought in the south. 

 

 

Degefu (1987) gives an account of the development of the 1984 drought in 

Ethiopia, including a description of the atmospheric circulation during spring 

and summer. In the spring season, the interaction between tropical lows and 

middle latitude low pressure systems was hindered by pressure anomalies 

over the Sahara and the Arabian Peninsula. In general, wave activity was 

reduced (Degefu 1987). The ERA-Interim wind field at 700 and 850 hPa 

suggests that the transport of air and moisture from the equatorial Indian 

Ocean toward Ethiopia in April was reduced, and the vertical velocity at 500 

hPa indicates reduced convection/increased subsidence over the Horn of 

Africa (not shown).The tropical cyclone Kamisy, which developed over the 

southern Indian Ocean in April 1984, has been blamed for disturbing the 

normally northwestward flow of moisture (Shanko and Camberlin 1998). 
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Fig. 7 Percentage of annual mean precipitation during SPI-defined, 12-month 

scale drought periods, as time series and maps for Ethiopian precipitation 

zones, during 1972–2010. Only years when there was an SPI-defined 

drought, as described in the text, are shown. The small maps to the left show 

the location of the zones, in red. For each zone, the percentage of the annual 

mean in each year is shown as a row of rectangles, colored relative to the 

scale in the upper right corner. The percentage values for the five driest years 

in each zone are repeated as white numbers inside the rectangles. Gray 

horizontal bars represent missing values. The colored dots at the horizontal 

axis mark years when at least one zone was at its driest. The row of maps 

below the set of zone time series summarizes the situation for the country 

from year to year. Well-known drought years have been marked with orange 

under these maps. 

 

 

During the summer season, many of the characteristic atmospheric 

circulation anomalies during dry Ethiopian summers (Segele et al. 2009) may 

be seen in the reanalysis fields, e.g., in August the low-level East African jet 

was weaker than normal, causing less transport of moisture from the Indian 

Ocean. Easterly anomalies in the 700- and 850-hPa winds to the west of 
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Ethiopia signifies reduced transport from Central Africa, and southerly 

anomalies above northern Ethiopian and the southern Red Sea indicates less 

transport from the north. Convection was reduced, not only in Ethiopia, but in 

a band reaching across the Sahel and into the Atlantic Ocean. GPCP 

anomaly maps for July and August (not shown) show that the rain-belt above 

Africa was reduced or deflected southward.  

 

4.1.4 1987 

 

In 1987, the wettest spring season during 1972–2011 was followed by the all-

over driest summer season (Fig. 6). This episode can be characterized as a 

summer drought in the highlands, reaching extreme levels on the 4-month 

scale. This was primarily caused by missing rain in July. Followed by a dry 

fall, and then a dry spring in 1988, the drought reached extreme levels also 

on the 12-month scale in May 1988. A wet summer then ended the drought 

on all scales below 12 months. According to Webb et al. (1992), the spring 

crops were destroyed by locust invasions, and this may have exacerbated the 

effect of the consecutive summer drought.  

 

4.1.5 1990–1992 

 

During 1990–1992, all zones experienced moderate, extreme, or severe 

drought on the seasonal or annual level. The years 1990 and 1991 were dry 

in all of Ethiopia, with the exception of a small positive deviation in the 

northeastern Rift Valley (I) in 1990. A severely dry spring in 1992 followed, 

causing extreme drought on the 12-month scale in the southern (XII-B) and 

southeastern (XII-A) lowlands, as well as in the northeastern Rift Valley (I) 

and the northwestern highlands (IV). In the southern lowlands (XII-B), the 

spring of 1992 was the worst during 1972–2011, and in the southeastern 

lowlands (XII-A) the second worst (Fig. 5). These zones get 50–60 % of the 
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annual precipitation in spring (Fig. 3). As a result, the southeastern lowlands 

(XII-A) received only 50 % of the mean annual precipitation in 1992 (Fig. 7). 

 

4.1.6 1999–2000 

 

The years 1998, 1999, and 2000 were all dry in the south, mainly due to dry 

spring seasons. In January–February 1999, the three southwestern zones 

(VII, VIII, and XII-B) already experienced mild to moderate drought on the 12-

month time scale. Though 1992 was comparable at some time scales, the 

worst drought in the southern lowlands (XIIB) occurred in 1999–2000. The 

year 1999 was the driest year during 1972–2010 in this zone, and severe 

drought occurred at all time scales at some stage. Similarly, the combination 

of 1999 and 2000 made this the driest period on the 24-month time scale. 

 

 

The spring season in 1999 was dry in all of Ethiopia in both years, and as 

shown in Fig. 5, seasonal drought occurred in most of the country. In the 

Northern (III), Northeastern (II), and central highlands (IX), the 1999 spring 

was the driest during the record. Summer and fall were wet in the highlands, 

leading to normal or above normal annual precipitation in the northern half of 

the country. The spatial anomaly pattern for 2000 is strikingly similar to that of 

1999, with a dry spring followed by a wet summer in the north, this time with a 

wet fall season everywhere, except in the southwest. 

 

4.1.7 2002–2003 

 

Due to a dry spring followed by a dry summer, 2002 became one of the driest 

years during 1972–2011. In the southwestern rain forest (VI), this was the 

driest year, and in the central Rift Valley (VII), the central highlands (IX), and 

the southern highlands (XI) the second driest (Fig. 4). After a dry spring in 

2003, a wet summer brought some relief, but 2003 was also drier than 
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normal. In the southwestern rain forest (VI), the drought was extreme at all-

time scales from 3 to 24 months and at some time scales also in adjacent 

zones and in the southern highlands (XI). At the 12-month scale, moderate to 

severe drought persisted in most of the highlands and the central Rift Valley 

from June–July 2002 through July 2003. 

 

4.1.8 2008–2011 

 

Figure 5 displays a visual cluster of dry spring seasons during the last 

decade. This is in accordance with Williams and Funk (2011), linking 

decreasing precipitation in East Africa in March–June with an eastward 

displacement of the circulation above the Indian Ocean. The drought from 

2008 until the present has been characterized by the repetition of dry spring 

seasons. Dry springs affect all of Ethiopia, causing the largest relative 

precipitation deficits in the south, where this is the main rainy season (Fig. 3). 

Except for a wet intermezzo in 2006, and 3 years with just above-normal 

values in one of the zones, the southern (XII-B) and southeastern (XII-A) 

lowlands have been drier than normal in every year from 1998 through 2010 

(Fig. 4). During this period, only 1998, 2005, and 2006 did not experience 

some degree of drought in at least one of these zones (Fig. 4). This set the 

stage for the recent drought.  

 

Among the recent years, 2009 stands out as the driest, being among the 

three driest years during 1972–2010 in 5 of the 14 zones. In the southern 

highlands (XI), this was the driest year in the record, and in the northeastern 

Rift Valley (I) and the southern Rift Valley (VII), the second driest year. As 

shown in Fig. 5, the spring season was dry in both 2008 and 2009, with the 

exception of the westernmost part. In most of the country, at least one of 

these springs was among the three driest during 1972–2011. Then came the 

summer of 2009, the driest or second driest in 5 of the 14 zones. 
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As shown in Fig. 4, 2009 was the only year during 1972–2011 when drought 

occurred on the annual scale in all of Ethiopia, in most zones ranging from 

moderate to severe. In most zones, more extreme levels of drought were 

reached during other years, but the drought was never as widespread, neither 

on annual nor on seasonal levels (Figs. 5 and 6). 

 

The year 2010 was also dry in the south, ending with mild to moderate 

drought on the 12-month time scale in December (Fig. 4). For the rest of 

Ethiopia, the picture is mixed. The drought in the south continued with a dry 

spring in 2011 (Fig. 5), and at the end of the record in May 2011, the drought 

in the southern and southeastern lowlands (XIIB and XII-A) was still severe 

on time scales of 12 and 24 months. In the eastern highlands (X-B), the 2011 

spring was the driest during 1972–2011. 

 

Though confirming the existence of extreme to severe drought in southern 

Ethiopia in 2010–2011, the zone aggregated precipitation data do not confirm 

the extremeness previously reported (USAID/FEWS 2011); the driest year in 

60 years. The driest 12-month periods in the southern and southeastern 

lowlands (zones XII-A and XII-B) occurred in 1992 and 2000, respectively. 

This does not exclude the possibility of local conditions in 2011 being even 

worse than at the zone level. 

 

4.2 A closer look at 2009 

 

 

In Section 4.1, 2009 was found to be the driest among the recent years, while 

1984 must be said to be the driest year during 1972–2010. The droughts in 

Ethiopia in the 1970s and 1980s were part of a drought belt ranging from the 

West African Sahel to the Horn of Africa, a typical African drought pattern 
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(Flohn 1987; Nicholson 1986; Mattsson and Rapp 1991). However, there is 

no one-to-one correspondence between precipitation anomalies in the Sahel 

and the Horn of Africa (Flohn 1987), and 2009 does not appear to be a typical 

example of this kind of situation. In this section, we will briefly discuss some 

of the large-scale features associated with the 2009 drought. 

 

 

4.2.1 Continental drought: 2009 compared with 1984 and 2002 

 

Figure 8 shows the large-scale drought patterns in the three driest years in 

Ethiopia: 1984, 2002, and 2009. SPI values based on the GPCP data set 

demonstrate quite distinct patterns for these 3 years. Whereas the 1984 

drought covered a latitudinal belt across Africa, including the Sahel and 

northern Ethiopia, the 2009 drought struck Ethiopia and the regions to the 

southwest: northwestern Kenya, Uganda, South Sudan, and parts of the 

Central African Republic and the Democratic Republic of the Congo. The year 

2002 was dry in Ethiopia and West Africa, but without the consecutive trans-

African belt characterizing 1984. Even though both the spring and the 

summer season were dry in both 1984 and 2009 (Section 4.1), the large-

scale patterns in Fig. 8 reflect the fact that in 1984 the summer was the most 

extreme season, whereas the spring was particularly dry in 2009. The 1984 

drought follows the northern hemisphere summer rain belt, whereas the core 

of the 2009 drought is located farther south, covering the Horn of Africa and 

the northern part of East Africa. In these regions, the February–May season 

is at least as important. 

 

 

As the rank map in the lower left corner shows, 2009 was the driest or second 

driest year in most of Ethiopia in the GPCP data; more severe than both 1984 

and 2002. The discrepancy between the gauge-based zone data described in 

this study and the satellite-based, gauge-adjusted GPCP data set may have 
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several causes. The GPCP data benefit from having satellite-based data in 

regions where observations are generally scarce, like the southwestern and 

southeastern lowlands (zones V and XII-B; Fig. 1). On the other hand, the 

number of Ethiopian gauges with freely available data is very limited, implying 

that anomalies at these stations may be given too much weight in other parts 

of Ethiopia. As there are large local variations in rainfall in Ethiopia, the 

quality of the GPCP and similar data sets is lower than it would have been if 

more ground observations had been included (Dinku et al. 2007). 

 

 

4.2.2 Atmospheric moisture transport in 2009 

 

 

Atmospheric circulation anomalies indicate that deflections of the transport of 

moisture to Ethiopia contributed to the drought in 2009 (Fig. 9). During the 

northern hemisphere winter, the low-level flow along the coast of East Africa 

is northeasterly. In spring, a southerly flow begins, developing into the Somali 

or East African low-level jet in summer (Findlater 1969a, b, 1977; Riddle and 

Cook 2008). In April, this jet is still under development, with a southeasterly 

flow reaching the coast of Kenya and Tanzania, while the flow in the northern 

Indian Ocean is still mainly northeasterly, entering the coast of the Horn of 

Africa from the east. As shown in Fig. 9a, the convergence zone that covers 

most of Ethiopia in April occurs as this easterly flow meets the southeasterly 

flow bringing moisture from the southern and equatorial Indian Ocean. Figure 

9c shows how southwesterly anomalies deflected moisture away from the 

coast of East Africa in April 2009. This is a result of similar anomalies in the 

low-level wind field, seen at 700 and 850 hPa (not shown). The anomalies 

hinder both the flow from the southeast and the east, resulting in a 

divergence anomaly covering most of Ethiopia. The convergence anomaly to 

the southwest of Ethiopia is due to the northeasterly anomaly in this region, 

the result of a strengthening of the 700-hPa wind field (not shown). 
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Fig. 8 Continental SPI distribution in 1984, 2002, and 2009. Twelve-month 

SPI of GPCP V2.2 in December 1984 (a), 2002 (b), and 2009 (c). The small, 

inset maps show the rank among the driest years during1979–2010, for a 

region surrounding Ethiopia. 

 

During the northern hemisphere summer, air masses from the Indian Ocean, 

Central Africa, and the Red Sea region flow toward Ethiopia (Mohamed et al. 

2005; Korecha and Barnston 2007; Levin et al., 2009; Segele et al. 2009; 

Viste and Sorteberg 2011). As shown in Fig. 9b, this causes strong moisture 

convergence above the Ethiopian highlands. Reduced precipitation may 

occur either if less moisture is available in the highlands or due to reduced 

convergence and ascent. Figure 9d shows reduced convergence above large 

parts of Ethiopia in July–August 2009, as well as in a zone to the southwest, 

reaching from Ethiopia across the continent to the Gulf of Guinea. There is a 

large belt of easterly anomalies in the moisture flux in this region, as well as 

in the transport into the continent from the Indian Ocean through the Turkana 

Channel in southern Ethiopia and northern Kenya. More moisture than normal 

entered both Ethiopia and the rest of the continent in this region, but the 

easterly anomaly farther west was stronger, leading to divergence. The inflow 

of moisture from the Red Sea to Ethiopia was also reduced. 
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The moisture transport anomalies in April and July–August 2009 were in line 

with previously documented conditions that reduce precipitation Ethiopia. The 

transport in April was similar to the transport in the driest spring seasons 

discussed by Williams and Funk (2011), whereas easterly anomalies in the 

July–August transport above Central Africa are known to cause reductions in 

the inflow of moisture to the Ethiopian highlands (Segele et al. 2009; Williams 

et al. 2011; Viste and Sorteberg 2012). The question remains whether 

these—or other relevant atmospheric anomalies—were connected or whether 

the dry spring in 2009 being followed by a dry summer was just an 

unfortunate random combination. We did not find indications of any consistent 

statistical relationship between precipitation or drought conditions in the 

spring and the summer season. Over all, dry spring seasons were as often 

followed by wet summers as by dry summers. However, Williams et al. (2011) 

found that precipitation variability in the Greater Horn of Africa during summer 

has been increasingly influenced by circulation anomalies caused by a 

warming of the southern tropical Indian Ocean. Based on similarities in spatial 

patterns of precipitation trends during spring and summer, they suggested 

that there may be a common mechanism behind suppressed precipitation in 

both seasons. If this is the case, and the associated circulation anomalies 

continue to occur, the probability of two-season droughts may increase. 

 

 



264 

 

 

Fig. 9 Moisture flux anomalies in 2009. ERA-Interim vertically integrated 

moisture flux and moisture flux divergence (small, inset maps): 1981–2010 

mean values in April (a) and July–August (b) and deviations from this mean in 

April 2009 (c) and July–August 2009 (d). The white background arrows in c 

and d represent the mean flux shown in a and b, respectively 

 

 

5 Trends in seasonal precipitation 

 

 

Precipitation trends in Ethiopia have been the subject of several studies, with 

sometimes contrasting conclusions (Conway 2000; Seleshi and Zanke 2004; 

Funk et al. 2003; Shang et al. 2011; Bewket and Conway 2007). In the data 

set used in this study, trend analysis indicates that rainfall in southern 

Ethiopia has decreased from 1971 till the present, both annually and in the 
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northern hemisphere spring and summer seasons. No clear trends could be 

detected in central and northern Ethiopia. 

 

 

The 14 rainfall zones were categorized into two regions, depending on 

whether February–May or June–September contributes most to the annual 

precipitation. As shown in Fig. 3, the ―spring region‖ thus consists of the three 

southernmost zones (VII, XII-A, and XII-B), whereas the rest of Ethiopia make 

up the ―summer region‖. The regional precipitation, shown in Fig. 10, was 

calculated as area weighted averages of the zones in each region. As 

described in Section 2.1.1, trends were calculated using linear regression and 

the significance was tested with bootstrapping and the nonparametric 

Spearman's rho test. In Fig. 10, trend lines are shown in those cases where 

the null hypothesis of no trend could not be rejected at the 0.05 significance 

level.  In the remaining cases, the p values of the various tests were too high. 

Statistical test results are given in Table 1. In general, there was good 

correspondence between the results of the different statistical tests applied.  

 

 

In the spring region, the February–May precipitation has declined with 2.6 

mm/year during 1971–2010. Comparing the expected values in 1971 and 

2010, this amounts to a reduction of 30 %. This is in line with Williams and 

Funk (2011), who found a general decrease in the March–June precipitation 

in East Africa during 1979–2009 compared to 1950–1979. In addition to the 

decline in the main rainy season in the spring region, Fig. 10 also shows a 

reduction of almost equal magnitude (2.2 mm/year) in the drier June–

September season, amounting to a reduction of more than 50 %. The total 

annual reduction in the spring region is 32% (5.4 mm/year). Previously, a 

decline in precipitation has been documented for individual gauge stations in 

southern, southwestern, and southeastern Ethiopia during 1965–2002, but 

mainly during June–September from 1982 (Seleshi and Zanke 2004). 
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Investigating extreme rainfall events in the same data, Seleshi and Camberlin 

(2006) reported decreasing trends in extreme rainfall intensity during both 

February–May and June–September at the same stations. 

 

 

Fig. 10 Precipitation trends. Annual and seasonal regional precipitation of 

1971–2010; nationally and for regions where the spring/summer contributes 

most to the annual precipitation. Linear regression trend lines and slope 

values are shown when statistically significant (p<0.05) and also passing 

Spearman's rho test and the bootstrap test. Exception: the national June–

September trend (marked with asterisk) passed all criteria, except 

Spearman's rho test. The percentage in the upper right corner marks the 

change in the expected value over the period, comparing the trend line values 

in the first and last year. 
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The results of most previous studies do not show any clear signs of changing 

rainfall patterns in central and northern Ethiopia (Seleshi and Camberlin 

2006; Seleshi and Zanke 2004; Bewket and Conway 2007; Cheung et 

al.2008). The results of this study are similar: The hypothesis of no trend in 

this region could not be rejected at the 0.05 % significance level, neither 

annually nor in any of the seasons. However, Fig. 5 demonstrates a visual 

clustering of dry seasons during the last 10–15 years in this part of the 

country, as well as in the south. The frequency of spring droughts was higher 

in this period than in the previous decades. 
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Table 1 Ethiopian precipitation trends in 1971–2010 [in millimeters per year] 

 Linear regression 

trend and 95 % CI  

[mm/year] 

Bootstrap mean  

trend and 95 % CI 

[mm/year] 

Linear 

regression 

R
2
 

Linear  

regression 

p 

Spearman p 

National, annual -3.6 [-6.4 -0.7] -3.6 [-6.5 -0.9] 0.14 0.016 0.006 

National, MAM -1.6 [-3.1 -0.1] -1.6 [-3.1 -0.3] 0.11 0.037 0.044 

National, JJAS -2.1 [-4.0 -0.3] -2.1 [-4.1 -0.3] 0.13 0.023 0.057 

National, OND 0.1 [-1.8 2.0] 0.1 [-1.8 1.7] 0.00 0.921 0.877 

Spring region, ann -5.4 [-9.7 -1.1] -5.5 [-10.4 -1.6] 0.15 0.014 0.002 

Spring region, 

MAM 

-2.6 [-4.6 -0.6] -2.5  [-4.6 -0.7] 0.15 0.013 0.014 

Spring region, 

JJAS 

-2.2 [-3.5 -0.9] -2.2 [-3.5 0.9] 0.23 0.002 0.001 

Spring region, 

OND 

-0.7 [-3.6 2.1] -0.7 [-3.4 1.8] 0.01 0.606 0.545 

Summer reg, ann -2.1 [-4.7 0.5] -2.0 [-4.9 0.6] 0.07 0.110 0.133 

Summer region, 

MAM 

-1.2 [-2.7 0.3] -1.2 [-2.7 0.1] 0.06 0.121 0.121 

Summer region, 

JJAS 

-1.3 [-3.5 0.9] -1.3 [-3.4 0.9] 0.04 0.239 0.333 

Summer region, 

OND 

0.3 [-1.4 2.0] 0.3 [-1.3 1.7] 0.00 0.726 0.665 

 

Linear trend slope and 95 % confidence interval determined by regression 

(first data column) and bootstrap (second column), with p values from the 

regression (third column) and Spearman's rho test (fourth column) on the 

national level and in regions dominated by spring and summer precipitation 

ann annual, MAM March–May, JJAS June–September, OND October–

December. 

 

 

The decline in precipitation in the southern part of the country is large enough 

to produce trends on the national level, despite the lack of trends in central 

and northern Ethiopia. The annual change during 1971–2010 was −3.6 

mm/year, a reduction of 14 % over the period. This was a result of a reduction 

of 1.6 mm/year in February–May and 2.1 mm/year in June–September. No 
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trends could be seen in any of the regions in October–December. Contrasting 

the lack of trends in other studies, Conway (2000) found that the rainfall over 

the Upper Blue Nile Basin in the Ethiopian highlands had decreased markedly 

from the mid-1960s to the late 1980s. As pointed out by Bewket and Conway 

(2007), the use of different time periods in the analyses is most likely the 

main reason for discrepancies between trend studies in the central and 

northern highlands. The dry years of the 1980s were followed by recovering 

rainfall in 1990s. Thus, it is more likely that a negative trend will be detected 

in a time series ending in the late 1980s or early 1990s, than in the late 

1990s. Over the more than hundred years from 1898 to 2002, Conway and 

Bewket (2004) found no trend in precipitation in Addis Ababa, though they 

also noted that the lack of spatial correlation means that this record may not 

be used to infer anything about other parts of the Ethiopian highlands. 

 

 

The main result (not shown) of changing the period in our analysis from 

1971–2010 to 1981–2010 was that significant trends occurred only in 

February–May, and then in both the spring and summer regions, as well as 

nationally. The reduction in the spring region was as high as 4.3 mm/year (37 

%), in the summer region 2.6 mm/year (24 %), and nationally 3.2 mm/year 

(29 %). 

 

6 Conclusions 
 
 

Analysis of gauge-based precipitation data for 14 Ethiopian climatic zones 

during 1971–2011 justifies the international concern about the recent 

dryness. Some of the last years have been among the driest in this period, 

and in southern Ethiopia, precipitation has declined, both in the spring 

(February–May) and the summer season (June–September). Dry spring 

seasons have characterized the period since 1999, affecting most of Ethiopia. 



270 

 

The largest relative precipitation deficits have appeared in the south, where 

this is the main rainy season. The rest of the country has also experienced 

extremely dry springs during the last decade, but no general, long-lasting 

trend can be assumed based on this data set. The spring seasons of 2008 

and 2009 were extremely dry in about half of the zones, and in 2009, the dry 

spring was followed by a dry summer. As a result, 2009 was one of the few 

years with drought conditions in all of Ethiopia, both on seasonal and annual 

scales. On the national level, 2009 was the second driest year in the record, 

after 1984, and drier than 2002. In the southern highlands, 2009 was the 

driest year in the record, whereas in the rest of the country, previous droughts 

were more extreme. In the northeastern Rift Valley, the annual amount of 

precipitation was as low as 29 % of the mean this year, compared to 18 % in 

1984. Fluctuations of this size were not experienced in any other zones, 

receiving at least 50 % of the annual mean precipitation in the driest year. In 

the central highlands, the annual precipitation was never less than 84 % of 

the mean. 

 

 

In the three southernmost zones, where the spring season is the most 

important rainy season, linear regression showed a decline in precipitation 

both in the spring (2.6 mm/year), the summer (2.2 mm/year), and annually 

(5.4 mm/year). This is in accordance with previous studies (Seleshi and 

Camberlin 2006; Seleshi and Zanke 2004; Williams and Funk 2011; Funk et 

al. 2008). 

 

 

In the rest of the country, those zones where the summer rains are most 

important, the linear regression analysis does not give us a reason for 

suggesting a corresponding decrease, neither on seasonal nor annual scale. 

This is in accordance with studies using records that ended in 2002/2003. 

However, signs of the decline in spring precipitation during 1979–2009 found 
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by Williams and Funk (2011) are present, as there has been a cluster of dry 

spring seasons during the last 10–15 years. Not only were the spring seasons 

of 2008–2011 among the driest during this period, but with the exception of 

2001, almost nationwide spring droughts also occurred during 1999–2004. 

 

 

The spatial drought pattern from year to year varies, to a large extent 

reflecting the variation in the seasonal precipitation cycle between the zones. 

Ethiopian precipitation exhibits great spatial variation, both in the average 

year, and when it comes to interannual variability. This affects the drought 

patterns. In a few years, mainly 1984 and 2009, drought conditions prevailed 

in all of Ethiopia, on both seasonal and annual time scales. In most historic 

drought years, the problem was of a more local or regional character, 

affecting only some parts of the country, and not necessarily in the same 

season. Due to this variation, there were no years without at least mild annual 

drought in at least one zone. Together with the severe effect of even small 

precipitation deficits on the mainly rain-fed agriculture (World Bank 2005), this 

helps to build the picture of Ethiopia as specifically drought-prone. 

 

 

If the tendency of dry springs persists in the future, the risk of serious drought 

years may increase in all of Ethiopia; in the south because the spring is the 

main rainy season. In northern and central Ethiopia, where the summer is the 

main rainy season, the outcome is less obvious. But unless physical 

mechanisms act against it, an increase in spring droughts increases the 

probability of the occasional dry summer having been preceded by a dry 

spring. As a result, droughts may more frequently last throughout the 

agricultural growth season, as in the two driest years during 1971–2010: 1984 

and 2009. 
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